
i

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DIGITAL NOTES

ON

OPERATING SYSTEMS

R22A0509

B.TECH II YEAR–II SEM

(R22) REGULATION

(2023-24)

Prepared by

DUTTA SAI ESWARI

MALLAREDDY COLLEGE OF ENGINEERING &TECHNOLOGY
(Autonomous Institution–UGC,Govt.of India)

Recognized under2(f)and12(B) ofUGC ACT1956
(Affiliated to JNTUH,Hyderabad,ApprovedbyAICTE-Accredited by NBA&NAAC–‘A’Grade-ISO 9001:2015 Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

ii

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

II Year B.Tech. CSE- I Sem

L/T/P/C

 3/-/-/3

(R22A0509)

OPERATING SYSTEM

Course Objectives:

1. To understand the fundamental concepts and techniques of Operating Systems.

2. To study the concepts of linux shell and scheduling.

3. To understand the concepts in deadlocks and process management.

4. To understand the concepts in memory managements and IPC mechanism.

5. To study the concept of file system concepts and sockets.

UNIT – I

Operating System-Introduction, Structures-Simple Batch, Multi-programmed, Time-shared,
Personal Computer, Parallel, Distributed Systems, Real-Time Systems , System components, Operating

System services.

Introduction to Linux operating system, linux file system, Linux Utilities

UNIT – II

Linux: Introduction to shell, Types of shell's , example shell programs.

Process and CPU Scheduling - Process concepts and scheduling, Operations on processes,
Cooperating Processes, Threads, Scheduling Criteria, Scheduling Algorithms, Multiple -Processor

Scheduling.

UNIT – III

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks,

Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware,

Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors

UNIT – IV

Interprocess Communication Mechanisms: IPC between processes on a single computer system,

IPC between processes on different systems, using pipes, FIFOs, message queues,

shared memory implementation in linux. Corresponding system calls.
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging,

Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System

Structure, Allocation methods, kernel support for files, system calls for file I/O operations open,

iii

create, read, write, close, lseek, stat, ioctl Disk Management: Disk Scheduling Algorithms-FCFS, SSTF,

SCAN, C-SCAN

TEXT BOOKS:

1. Beginning Linux Programming –Neil Mathew,Richard Stones 4th Edition,Wiley

2. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7 th

Edition,John Wiley

3. Unix System Programming using C++, T.Chan,PHI.

4. Unix Concepts and Applications, 4th Edition, SumitabhaDas,TMH,2006.

5. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems – Internals and Design Principles Stallings, Fifth Edition–2005, Pearson
Education/PHI

2. Operating System A Design Approach- Crowley, TMH.

3. Modern Operating Systems, Andrew S. Tanenbaum 2 nd edition, Pearson/PHI

4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education

5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

Course Outcomes:

1. An ability to understand basic concepts of operating system.

2. An ability to understand linux shell and scheduling.

3. An ability to analyze memory management and deadlocks.

4. An ability to describe memory management and concurrency control mechanisms.

5. An ability to compare various file systems

INDEX

UNIT NO TOPIC PAGE NO

I

Introduction

Operating System concepts 1

Types of Operating Systems, Operating

System Components
2

Operating services 8

Introduction to Linux 15

II

Process & CPU Scheduling

Shell Programming 23

Process concepts and scheduling 39

Operations on Process, Cooperating Processes 40

Threads, Scheduling Criteria 41

Scheduling Algorithms, Multiprocessor

scheduling
44

III
Deadlocks & Process Management

System Model, Deadlocks Characterization 53

Methods for Handling Deadlocks 54

The Critical Section Problem 61

Classical Problems of Synchronization 67

IV Interprocess Communication

IPC between processes on a single computer

system
76

shared memory implementation in linux 83

Paging & Segmentation 94

V File System Interface and Operations

 Access methods 122

Directory Structure. File System Structure 125

Allocation methods, Disk Scheduling

Algorithms
138

iv

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 1

UNIT-I

Operating System-Introduction, Structures-Simple Batch, Multi-programmed, Time-shared, Personal

Computer,Parallel, Distributed Systems, Real-Time Systems , System components, Operating System

services.

Introduction to Linux operating system, linux file system, Linux Utilities

A computer system has many resources (hardware and software), which may be required to complete a

task. The commonly required resources are input/output devices, memory, file storage space, CPU, etc.

The operating system acts as a manager of the above resources and allocates them to specific programs

and users, whenever necessary to perform a particular task. Therefore the operating system is the

resource manager i.e. it can manage the resource of a computer system internally. The resources are

processor, memory, files, and I/O devices.

In simple terms, an operating system is an interface between the computer user and the machine.

It is very important for you that every computer must have an operating system in order to run other

programs. The operating system mainly coordinates the use of the hardware among the various system

programs and application programs for various users.

An operating system acts similarly like government means an operating system performs no useful

function by itself; though it provides an environment within which other programs can do useful work.

Below we have an abstract view of the components of the computer

system:

In the above picture:

 The Computer Hardware contains a central processing unit(CPU), the memory, and the

input/output (I/O) devices and it provides the basic computing resources for the system.

 The Application programs like spreadsheets, Web browsers, word processors, etc. are used to

define the ways in which these resources are used to solve the computing problems of the users. And

the System program mainly consists of compilers, loaders, editors, OS, etc.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 2

 The Operating System is mainly used to control the hardware and coordinate its use among the

various application programs for the different users.

 Basically, Computer System mainly consists of hardware, software, and data.

OS is mainly designed in order to serve two basic purposes:

1. The operating system mainly controls the allocation and use of the computing System’s resources

among the various user and tasks.

2. It mainly provides an interface between the computer hardware and the programmer that

simplifies and makes feasible for coding, creation of application programs and debugging

Two Views of Operating System

1. User's View

2. System View

Operating System: User View

The user view of the computer refers to the interface being used. Such systems are designed for one

user to monopolize its resources, to maximize the work that the user is performing. In these cases, the

operating system is designed mostly for ease of use, with some attention paid to performance, and

none paid to resource utilization.

Operating System: System View

The operating system can be viewed as a resource allocator also. A computer system consists of many

resources like - hardware and software - that must be managed efficiently. The operating system acts

as the manager of the resources, decides between conflicting requests, controls the execution of

programs, etc.

Types of Operating System

Given below are different types of Operating System:

1. Simple Batch System

2. Multiprogrammed

3. Time-Shared

4. Personal Computer

5. Parallel

6. Distributed Systems

7. Real Time Systems

1. Simple Batch System

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 3

In a Batch Operating System, the similar jobs are grouped together into batches with the help of some

operator and these batches are executed one by one. For example, let us assume that we have 10

programs that need to be executed. Some programs are written in C++, some in C and rest in Java.

Now, every time when we run these programmes individually then we will have to load the compiler

of that particular language and then execute the code. But what if we make a batch of these 10

programmes. The benefit with this approach is that, for the C++ batch, you need to load the compiler

only once. Similarly, for Java and C, the compiler needs to be loaded only once and the whole batch

gets executed. The following image describes the working of a Batch Operating System.

Advantages:

1. The overall time taken by the system to execute all the programmes will be reduced.

2. The Batch Operating System can be shared between multiple users.

Disadvantages:

1. Manual interventions are required between two batches.

2. The CPU utilization is low because the time taken in loading and unloading of batches is very

high as compared to execution time.

Multiprogramming

Sharing the processor, when two or more programs reside in memory at the same time, is referred as

multiprogramming. Multiprogramming assumes a single shared processor. Multiprogramming

increases CPU utilization by organizing jobs so that the CPU always has one to execute.

The following figure shows the memory layout for a multiprogramming

system.

An OS does the following activities related to multiprogramming.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 4

 The operating system keeps several jobs in memory at a time.

 This set of jobs is a subset of the jobs kept in the job pool.

 The operating system picks and begins to execute one of the jobs in the memory.

 Multiprogramming operating systems monitor the state of all active programs and system resources

using memory management programs to ensures that the CPU is never idle, unless there are no jobs

to process.

Advantages

 High and efficient CPU utilization.

 User feels that many programs are allotted CPU almost simultaneously.

Disadvantages

 CPU scheduling is required.

 To accommodate many jobs in memory, memory management is required.

Time-Sharing Operating System

In a Multi-tasking Operating System, more than one processes are being executed at a particular time

with the help of the time-sharing concept. So, in the time-sharing environment, we decide a time that

is called time quantum and when the process starts its execution then the execution continues for only

that amount of time and after that, other processes will be given chance for that amount of time only.

In the next cycle, the first process will again come for its execution and it will be executed for

that time quantum only and again next process will come. This process will continue. The following

image describes the working of a Time-Sharing Operating System.

Advantages:

1. Since equal time quantum is given to each process, so each process gets equal opportunity to

execute.

2. The CPU will be busy in most of the cases and this is good to have case.

Disadvantages:

1. Process having higher priority will not get the chance to be executed first because the equal

opportunity is given to each process.

Personal Computers

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 5

Personal computer operating system provides a good interface to a single user.

Personal computer operating systems are widely used for word processing, spreadsheets and Internet

access.

Personal computer operating system are made only for personal.You can say that your laptops,

computer systems, tablets etc. are your personal computers and the operating system such as windows

7, windows 10, android, etc. are your personal computer operating system.

And you can use your personal computer operating system for your personal purposes, for example,

to chatting with your friends using some social media sites, reading some articles from internet,

making some projects through microsoft powerpoint or any other, designing your website,

programming something, watching some videos and movies, listening to some songs and many more.

Parallel Processing

Parallel processing requires multiple processors and all the processor works simultaneously in

the system. Here, the task is divided into subparts and these subparts are then distributed among

the available processors in the system. Parallel processing completes the job on the shortest

possible time.

All the processors in the parallel processing environment should run on the same operating system.

All processors here are tightly coupled and are packed in one casing. All the processors in the system

share the common secondary storage like the hard disk. As this is the first place where the programs

are to be placed.

There is one more thing that all the processors in the system share i.e. the user terminal (from where

the user interact with the system). The user need not to be aware of the inner architecture of the

machine. He should feel that he is dealing with the single processor only and his interaction with the

system would be the same as in a single processor,

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 6

Advantages

1. It saves time and money as many resources working together will reduce the time and cut

potential costs.

2. It can be impractical to solve larger problems on Serial Computing.

3. It can take advantage of non-local resources when the local resources are finite.

4. Serial Computing ‘wastes’ the potential computing power, thus Parallel Computing makes

better work of the hardware.

Disadvantages

1. It addresses such as communication and synchronization between multiple sub-tasks and

processes which is difficult to achieve.

2. The algorithms must be managed in such a way that they can be handled in a parallel

mechanism.

3. The algorithms or programs must have low coupling and high cohesion. But it’s difficult to

create such programs.

4. More technically skilled and expert programmers can code a parallelism-based program well.

Distributed Operating System

These types of the operating system is a recent advancement in the world of computer technology and

are being widely accepted all over the world and, that too, with a great pace. Various autonomous

interconnected computers communicate with each other using a shared communication network.

Independent systems possess their own memory unit and CPU. These are referred to as loosely

coupled systems or distributed systems. These system’s processors differ in size and function. The

major benefit of working with these types of the operating system is that it is always possible that

one user can access the files or software which are not actually present on his system but some other

system connected within this network i.e., remote access is enabled within the devices connected in

that network.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 7

Advantages of Distributed Operating System:

 Failure of one will not affect the other network communication, as all systems are

independent from each other

 Electronic mail increases the data exchange speed

 Since resources are being shared, computation is highly fast and durable

 Load on host computer reduces

 These systems are easily scalable as many systems can be easily added to the network

 Delay in data processing reduces

Disadvantages of Distributed Operating System:

 Failure of the main network will stop the entire communication

 To establish distributed systems the language which is used are not well defined yet

 These types of systems are not readily available as they are very expensive.

Real-Time Operating System:

It is developed for real-time applications where data should be processed in a fixed, small duration of

time. It is used in an environment where multiple processes are supposed to be accepted and processed

in a short time. RTOS requires quick input and immediate response, e.g., in a petroleum refinery, if

the temperate gets too high and crosses the threshold value, there should be an immediate

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 8

response to this situation to avoid the explosion. Similarly, this system is used to control scientific

instruments, missile launch systems, traffic lights control systems, air traffic control systems, etc.

This system is further divided into two types based on the time constraints:

Hard Real-Time Systems:

These are used for the applications where timing is critical or response time is a major factor; even a

delay of a fraction of the second can result in a disaster. For example, airbags and automatic parachutes

that open instantly in case of an accident. Besides this, these systems lack virtual memory.

Soft Real-Time Systems:

These are used for application where timing or response time is less critical. Here, the failure to meet

the deadline may result in a degraded performance instead of a disaster. For example, video

surveillance (cctv), video player, virtual reality, etc. Here, the deadlines are not critical for every task

every time.

Advantages of real-time operating system:

o The output is more and quick owing to the maximum utilization of devices and system

o Task shifting is very quick, e.g., 3 microseconds, due to which it seems that several tasks are

executed simultaneously

o Gives more importance to the currently running applications than the queued application

o It can be used in embedded systems like in transport and others.

o It is free of errors.

o Memory is allocated appropriately.

Disadvantages of real-time operating system:

o A fewer number of tasks can run simultaneously to avoid errors.

o It is not easy for a designer to write complex and difficult algorithms or proficient programs

required to get the desired output.

o Specific drivers and interrupt signals are required to respond to interrupts quickly.

o It may be very expensive due to the involvement of the resources required to work.

An operating system is an interface which provides services to both the user and to the programs.

It provides an environment for the program to execute. It also provides users with the services of how

to execute programs in a convenient manner. The operating system provides some services to program

and also to the users of those programs. The specific services provided by the OS are off course

different.

Following are the common services provided by an operating system:

1. Program execution

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 9

2. I/O operations

3. File system manipulation

4. Communication

5. Error detection

6. Resource allocation

7. Protection

1) Program Execution

 An operating system must be able to load many kinds of activities into the memory and to run it.

The program must be able to end its execution, either normally or abnormally.

 A process includes the complete execution of the written program or code. There are some of the

activities which are performed by the operating system:

o The operating system Loads program into memory

o It also Executes the program

o It Handles the program’s execution

o It Provides a mechanism for process synchronization

o It Provides a mechanism for process communication

2) I/O Operations

 The communication between the user and devices drivers are managed by the operating system.

 I/O devices are required for any running process. In I/O a file or an I/O devices can be involved.

 I/O operations are the read or write operations which are done with the help of input-output

devices.

 Operating system give the access to the I/O devices when it required.

3) File system manipulation

 The collection of related information which represent some content is known as a file. The computer

can store files on the secondary storage devices. For long-term storage purpose. examples of storage

media include magnetic tape, magnetic disk and optical disk drives like CD, DVD.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 10

 A file system is a collection of directories for easy understand and usage. These directories contain

some files. There are some major activities which are performed by an operating system with respect

to file management.

o The operating system gives an access to the program for performing an operation on the

file.

o Programs need to read and write a file.

o The user can create/delete a file by using an interface provided by the operating system.

o The operating system provides an interface to the user creates/ delete directories.

o The backup of the file system can be created by using an interface provided by the

operating system.

4) Communication

In the computer system, there is a collection of processors which do not share memory peripherals

devices or a clock, the operating system manages communication between all the processes. Multiple

processes can communicate with every process through communication lines in the network. There

are some major activities that are carried by an operating system with respect to communication.

 Two processes may require data to be transferred between the process.

 Both the processes can be on one computer or a different computer, but are connected through a

computer network.

5) Error handling

An error is one part of the system that may cause malfunctioning of the complete system. The

operating system constantly monitors the system for detecting errors to avoid some situations. This

give relives to the user of the worry of getting an error in the various parts of the system causing

malfunctioning.

The error can occur anytime and anywhere. The error may occur anywhere in the computer system

like in CPU, in I/O devices or in the memory hardware. There are some activities that are performed

by an operating system:

 The OS continuously checks for the possible errors.

 The OS takes an appropriate action to correct errors and consistent computing.

6) Resource management

When there are multiple users or multiple jobs running at the same time resources must be allocated

to each of them. There are some major activities that are performed by an operating system:

 The OS manages all kinds of resources using schedulers.

 CPU scheduling algorithm is used for better utilization of CPU.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 11

7) Protection

The owners of information stored in a multi-user computer system want to control its use. When

several disjoints processes execute concurrently it should not be possible for any process to interfere

with another process. Every process in the computer system must be secured and controlled.

Operating system can be implemented with the help of various structures. The structure of the OS

depends mainly on how the various common components of the operating system are interconnected

and melded into the kernel. Depending on this we have following structures of the operating system:

Simple structure:

Such operating systems do not have well defined structure and are small, simple and limited systems.

The interfaces and levels of functionality are not well separated. MS-DOS is an example of such

operating system. In MS-DOS application programs are able to access the basic I/O routines. These

types of operating system cause the entire system to crash if one of the user programs fails.

Diagram of the structure of MS-DOS is shown below.

Advantages of Simple structure:

 It delivers better application performance because of the few interfaces between the application

program and the hardware.

 Easy for kernel developers to develop such an operating system.

Disadvantages of Simple structure:

 The structure is very complicated as no clear boundaries exists between modules.

 It does not enforce data hiding in the operating system.

Layered structure:

An OS can be broken into pieces and retain much more control on system. In this structure the OS

is broken into number of layers (levels). The bottom layer (layer 0) is the hardware and the

topmost layer (layer N) is the user interface. These layers are so designed that each layer uses the

functions of the lower level layers only. This simplifies the debugging process as if lower level

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 12

layers are debugged and an error occurs during debugging then the error must be on that layer only as

the lower level layers have already been debugged.

The main disadvantage of this structure is that at each layer, the data needs to be modified and passed

on which adds overhead to the system. Moreover careful planning of the layers is necessary as a layer

can use only lower level layers. UNIX is an example of this structure.

Advantages of Layered structure:

 Layering makes it easier to enhance the operating system as implementation of a layer can be

changed easily without affecting the other layers.

 It is very easy to perform debugging and system verification.

Disadvantages of Layered structure:

 In this structure the application performance is degraded as compared to simple structure.

 It requires careful planning for designing the layers as higher layers use the functionalities of

only the lower layers.

Introduction to Linux:

Linux is a Unix-like computer operating system assembled under the model of free and open source

software development and distribution. The defining component of Linux is the Linux kernel, an

operating system kernel first released 5 October 1991 by Linus Torvalds.

Linux was originally developed as a free operating system for Intel x86-based personal computers. It

has since been ported to more computer hardware platforms than any other operating system. It is a

leading operating system on servers and other big iron systems such as mainframe computers and

supercomputers more than 90% of today's 500 fastest supercomputers run some variant of Linux,

including the 10 fastest. Linux also runs on embedded systems (devices where the operating system is

typically built into the firmware andhighly tailored to the system) such as mobile phones, tablet

computers, network routers, televisions and video game consoles; the Android system in wide use on

mobile devices is built on the Linux kernel.

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Operating_system_kernel
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Intel_x86
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Big_iron
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/TOP500
http://en.wikipedia.org/wiki/TOP500
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Firmware
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Router_%28computing%29
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Android_%28operating_system%29

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 13

Basic Features

Following are some of the important features of Linux Operating System.

 Portable - Portability means software‘s can works on different types of hardware‘s in same way.

Linux kernel and application programs support their installation on any kind of hardware platform.

 Open Source - Linux source code is freely available and it is community based development

project. Multiple Teams works in collaboration to enhance the capability of Linux operating system

and it is continuously evolving.

 Multi-User - Linux is a multiuser system means multiple users can access systemresources like

memory/ ram/ application programs at same time.

 Multiprogramming - Linux is a multiprogramming system means multiple applicationscan run

at same time.

 Hierarchical File System - Linux provides a standard file structure in which system

files/ user files are arranged.

 Shell - Linux provides a special interpreter program which can be used to execute

commands of the operating system. It can be used to do various types of operations, callapplication

programs etc.

 Security - Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

Linux Advantages

1. Low cost: You don‘t need to spend time and money to obtain licenses since Linux and much

of its software come with the GNU General Public License. You can start to work immediately

without worrying that your software may stop working anytime because the free trial version expires.

Additionally, there are large repositories from which you can freely download high quality software

for almost any task you can think of.

2. Stability: Linux doesn‘t need to be rebooted periodically to maintain performance levels.It

doesn‘t freeze up or slow down over time due to memory leaks and such. Continuous up- times of

hundreds of days (up to a year or more) are not uncommon.

3. Performance: Linux provides persistent high performance on workstations and on networks.

It can handle unusually large numbers of users simultaneously, and can make old computers

sufficiently responsive to be useful again.

4. Network friendliness: Linux was developed by a group of programmers over the Internet

and has therefore strong support for network functionality; client and server systems can be easily set

up on any computer running Linux. It can perform tasks such as network backups faster and

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 14

more reliably than alternative systems.

5. Flexibility: Linux can be used for high performance server applications, desktop

applications, and embedded systems. You can save disk space by only installing the components

needed for a particular use. You can restrict the use of specific computers by installing for example

only selected office applications instead of the whole suite.

6. Compatibility: It runs all common UNIX software packages and can process all common

file formats.

7. Choice: The large number of Linux distributions gives you a choice. Each distribution is

developed and supported by a different organization. You can pick the one you like best; the core

functionalities are the same; most software runs on most distributions.

8. Fast and easy installation: Most Linux distributions come with user-friendly installation

and setup programs. Popular Linux distributions come with tools that make installation of additional

software very user friendly as well.

9. Full use of hard disk: Linux continues work well even when the hard disk is almost full.

Multi-tasking: Linux is designed to do many things at the same time; e.g., a large printing

job in the background won‘t slow down your other work.

10. Security: Linux is one of the most secure operating systems. ―Walls‖ and flexible file

access permission systems prevent access by unwanted visitors or viruses. Linux users have to option

to select and safely download software, free of charge, from online repositories containing thousands

of high quality packages. No purchase transactions requiring credit card numbers or other sensitive

personal information are necessary.

11. Open Source: If you develop software that requires knowledge or modification of the

operating system code, LINUX‘s source code is at your fingertips. Most Linux applications are Open

Source as well.

Layered Architecture:

Linux System Architecture is consists of following layers

 Hardware layer - Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 15

 Kernel - Core component of Operating System, interacts directly with hardware,

provides low level services to upper layer components.

 Shell - An interface to kernel, hiding complexity of kernel's functions from users.

Takescommands from user and executes kernel's functions.

 Utilities - Utility programs giving user most of the functionalities of an operating

systems.

LINUX File system

Linux file structure files are grouped according to purpose. Ex: commands, data files, documentation.

Parts of a Unix directory tree are listed below. All directories are grouped under the root entry "/".

That part of the directory tree is left out of the below diagram.

1. / – Root

 Every single file and directory starts from the root directory.

 Only root user has write privilege under this directory.

 Please note that /root is root user‘s home directory, which is not same as /.

2. /bin – User Binaries

 Contains binary executables.

 Common linux commands you need to use in single-user modes are located

under thisdirectory.

 Commands used by all the users of the system are located here.

 For example: ps, ls, ping, grep, cp.

3. /sbin – System Binaries

 Just like /bin, /sbin also contains binary executables.

 But, the linux commands located under this directory are used typically

by systemaministrator, for system maintenance purpose.

 For example: iptables, reboot, fdisk, ifconfig, swapon

4. /etc – Configuration Files

 Contains configuration files required by all programs.

 This also contains startup and shutdown shell scripts used to start/stop

individualprograms.

 For example: /etc/resolv.conf, /etc/logrotate.conf

5. /dev – Device Files

 Contains device files.

 These include terminal devices, usb, or any device attached to the system.

 For example: /dev/tty1, /dev/usbmon0

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 16

6. /proc – Process Information

 Contains information about system process.

 This is a pseudo filesystem contains information about running process. For example:

/proc/{pid} directory contains information about the process with that particular pid.

 This is a virtual filesystem with text information about system resources. For example:

/proc/uptime

7. /var – Variable Files

 var stands for variable files.

 Content of the files that are expected to grow can be found under this directory.

 This includes — system log files (/var/log); packages and database files (/var/lib);

emails (/var/mail); print queues (/var/spool); lock files (/var/lock); temp files

needed across reboots (/var/tmp);

8. /tmp – Temporary Files

 Directory that contains temporary files created by system and users.

 Files under this directory are deleted when system is rebooted.

9. /usr – User Programs

 Contains binaries, libraries, documentation, and source-code for second level programs.

 /usr/bin contains binary files for user programs. If you can‘t find a user binary under

/bin, look under /usr/bin. For example: at, awk, cc, less, scp

 /usr/sbin contains binary files for system administrators. If you can‘t find a

system binary under /sbin, look under /usr/sbin. For example: atd, cron, sshd,

useradd, userdel

 /usr/lib contains libraries for /usr/bin and /usr/sbin

 /usr/local contains users programs that you install from source. For example,

when youinstall apache from source, it goes under /usr/local/apache2

10. /home – Home Directories

 Home directories for all users to store their personal files.

 For example: /home/john, /home/nikita

11. /boot – Boot Loader Files

 Contains boot loader related files.

 Kernel initrd, vmlinux, grub files are located under /boot

 For example: initrd.img-2.6.32-24-generic, vmlinuz-2.6.32-24-generic

12. /lib – System Libraries

 Contains library files that supports the binaries located under /bin and /sbin

 Library filenames are either ld* or lib*.so.*

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 17

 For example: ld-2.11.1.so, libncurses.so.5.7

13. /opt – Optional add-on Applications

 opt stands for optional.

 Contains add-on applications from individual vendors.

 add-on applications should be installed under either /opt/ or /opt/ sub-directory.

14. /mnt – Mount Directory

 Temporary mount directory where sysadmins can mount filesystems.

15. /media – Removable Media Devices

 Temporary mount directory for removable devices.

 For examples, /media/cdrom for CD-ROM; /media/floppy for floppy drives;

/media/cdrecorder for CD writer

16. /srv – Service Data

 srv stands for service.

 Contains server specific services related data.

 For example, /srv/cvs contains CVS related data.

File Handling Utilities

In Linux, most of the operations are performed on files. And to handle these files Linux has directories also

known as folders which are maintained in a tree-like structure. Though, these directories are also a type of file

themselves. Linux has 3 types of files:

1. Regular Files: It is the common file type in Linux. it includes files like – text files, images, binary files, etc.

Such files can be created using the touch command. They consist of the majority of files in the Linux/UNIX

system. The regular file contains ASCII or Human Readable text, executable program binaries, program data

and much more.

2. Directories: Windows call these directories as folders. These are the files that store the list of file names and

the related information. The root directory(/) is the base of the system, /home/ is the default location for user’s

home directories, /bin for Essential User Binaries, /boot – Static Boot Files, etc. We could create new directories

with mkdir command.

3. Special Files: Represents a real physical device such as a printer which is used for IO operations. Device or

special files are used for device Input/Output(I/O) on UNIX and Linux systems. You can see them in a file

system like an ordinary directory or file.

In Unix systems, there are two types of special files for each device, i.e. character special files and block special

files. For more details, read the article Unix file system.

1. Files Listing

To perform Files listings or to list files and directories ls command is used

$ls

$ls -l

2. Creating Files

touch command can be used to create a new file. It will create and open a new blank file if the file with a

filename does not exist. And in case the file already exists then the file will not be affected.

https://www.geeksforgeeks.org/mkdir-command-in-linux-with-examples/
https://www.geeksforgeeks.org/unix-file-system/
https://www.geeksforgeeks.org/practical-applications-ls-command-linux/
https://www.geeksforgeeks.org/touch-command-in-linux-with-examples/

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 18

$touch filename

3. Displaying File Contents

cat command can be used to display the contents of a file. This command will display the contents of the

‘filename’ file. And if the output is very large then we could use more or less to fit the output on the terminal

screen otherwise the content of the whole file is displayed at once.

$cat filename

4. Copying a File

cp command could be used to create the copy of a file. It will create the new file in destination with the same
name and content as that of the file ‘filename’.

$cp source/filename destination/

5. Moving a File

mv command could be used to move a file from source to destination. It will remove the file filename from the

source folder and would be creating a file with the same name and content in the destination folder.

$mv source/filename destination/

6. Renaming a File

mv command could be used to rename a file. It will rename the filename to new_filename or in other words, it

will remove the filename file and would be creating a new file with the new_filename with the same content and

name as that of the filename file.

$mv filename new_filename

7. Deleting a File

rm command could be used to delete a file. It will remove the filename file from the directory.

$rm filename

Process Utilities

A program/command when executed, a special instance is provided by the system to the process. This

instance consists of all the services/resources that may be utilized by the process under execution.

 Whenever a command is issued in Unix/Linux, it creates/starts a new process. For example, pwd when

issued which is used to list the current directory location the user is in, a process starts.

 Through a 5 digit ID number Unix/Linux keeps an account of the processes, this number is call process ID

or PID. Each process in the system has a unique PID.

 Used up pid’s can be used in again for a newer process since all the possible combinations are used.
 At any point of time, no two processes with the same pid exist in the system because it is the pid that
Unixusestotrackeachprocess.

Initializing a process

A process can be run in two ways:

Method 1: Foreground Process : Every process when started runs in foreground by default, receives input

from the keyboard, and sends output to the screen. When issuing pwd command

$ ls pwd

Output:

https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cp-command-linux-examples/
https://www.geeksforgeeks.org/mv-command-linux-examples/
https://www.geeksforgeeks.org/mv-command-linux-examples/
https://www.geeksforgeeks.org/rm-command-linux-examples/

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 19

$ /home/geeksforgeeks/root

When a command/process is running in the foreground and is taking a lot of time, no other processes can be
run or started because the prompt would not be available until the program finishes processing and comes

out.

Method 2: Background Process: It runs in the background without keyboard input and waits till keyboard

input is required. Thus, other processes can be done in parallel with the process running in the background

since they do not have to wait for the previous process to be completed.

Adding & along with the command starts it as a background process

$ pwd &

Since pwd does not want any input from the keyboard, it goes to the stop state until moved to the foreground and

given any data input. Thus, on pressing Enter:

Output:

[1] + Done pwd

$

That first line contains information about the background process – the job number and the process ID. It tells

you that the ls command background process finishes successfully. The second is a prompt for another

command.

Tracking ongoing processes

ps (Process status) can be used to see/list all the running processes.

$ ps

PID TTY TIME CMD

19 pts/1 00:00:00 sh

24 pts/1 00:00:00 ps

For more information -f (full) can be used along with ps

$ ps –f

UID PID PPID C STIME TTY TIME CMD

52471 19 1 0 07:20 pts/1 00:00:00f sh

52471 25 19 0 08:04 pts/1 00:00:00 ps -f

For single-process information, ps along with process id is used

$ ps 19

PID TTY TIME CMD

19 pts/1 00:00:00 sh

For a running program (named process) Pidof finds the process id’s (pids)

Fields described by ps are described as:

 UID: User ID that this process belongs to (the person running it)

 PID: Process ID

 PPID: Parent process ID (the ID of the process that started it)

 C: CPU utilization of process

 STIME: Process start time

 TTY: Terminal type associated with the process

 TIME: CPU time is taken by the process

 CMD: The command that started this process

There are other options which can be used along with ps command :

 -a: Shows information about all users

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 20

 -x: Shows information about processes without terminals

 -u: Shows additional information like -f option

 -e: Displays extended information

Stoppingaprocess:

When running in foreground, hitting Ctrl + c (interrupt character) will exit the command. For processes

running in background kill command can be used if it’s pid is known.

Networking Commands

One can use a variety of network tools to perform tasks such as obtaining information about other

systems on your network, accessing other systems, and communicating directly with other users. Network

information can be obtained using utilities such as ping, finger, traceroute, host, dig, nslookup etc. These are

useful for smaller networks and enables to access remote systems directly to copy files or execute the command.

Network Information Tools are listed below:

1. ping: The ping command is used to check if a remote system is running or up. In short this command

is used to detect whether a system is connected to the network or not. Syntax:

$ ping www.geeksforgeeks.com

Note: In place of using domain name you can use IP address also. A ping operation can fail if ping access is
denied by a network firewall.

2. host: This command is used to obtain network address information about a remote system connected to your

network. This information usually consists of system’s IP address, domain name address and sometimes

mail server also. Syntax:

$ host www.google.com

3. finger: One can obtain information about the user on its network and the who command to see what users

are currently online on your system. The who command list all users currently connected, along with when, how

long, and where they logged in. finger can operate on large networks, though most systems block it for security

reasons.

Syntax:

$ finger www.ABC.com

In place of ABC you can use any website domain or IP address.

4. traceroute: This command is use to track the sequence of computer networks. You can track to check the

route through which you are connected to a host. mtr or xmtr tools can also be used to perform

both ping and traces. Options are available for specifying parameters like the type of service (-t) or the

source host (-s).

5. netstat: This command is used to check the status of ports whether they are open, closed, waiting and

masquerade connections. Network Statistic (netstat) command display connection information, routing table

information etc.

Syntax:

$ netstat

Note: To display routing table information use (netstat -r).

6. tracepath: tracepath performs a very similar function to that of traceroute command. The main difference

between these command is that tracepath doesn’t take complicated options. This command doesn’t require root

privileges.

Syntax:

$ tracepath www.google.com

https://www.geeksforgeeks.org/ping-command-in-linux-with-examples/
http://www.geeksforgeeks.com/
https://www.geeksforgeeks.org/host-command-in-linux-with-examples/
http://www.google.com/
https://www.geeksforgeeks.org/finger-command-in-linux-with-examples/
http://www.abc.com/
https://www.geeksforgeeks.org/traceroute-command-in-linux-with-examples/
https://www.geeksforgeeks.org/netstat-command-linux/
https://www.geeksforgeeks.org/tracepath-command-in-linux-with-examples/
http://www.google.com/

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 21

7. dig: dig(Domain Information Groper) query DNS related information like a record, cname, mxrecord etc.

This command is used to solve DNS related queries.

Syntax:

$ dig www.google.com

8. hostname: This command is used to see the hostname of your computer. You can change hostname

permanently in etc/sysconfig/network. After changing the hostname you need to reboot the computer.

Syntax:

$ hostname

9. route: The route command is used to display or modify the routing table. To add a gateway use (-n). Syntax:

$ route -n

10. nslookup: You can use nslookup(name server lookup) command to find out DNS related query or testing and

troubleshooting DNS server.

Syntax:

$ nslookup google.com

Filters in Linux

Filters are programs that take plain text(either stored in a file or produced by another program) as standard input,

transforms it into a meaningful format, and then returns it as standard output. Linux has a number of filters. Some

of the most commonly used filters are explained below:

1. cat : Displays the text of the file line by line.

Syntax:

cat [path]

2. head : Displays the first n lines of the specified text files. If the number of lines is not specified then by
default prints first 10 lines.

Syntax:

head [-number_of_lines_to_print] [path]

3. tail : It works the same way as head, just in reverse order. The only difference in tail is, it returns the lines

from bottom to up.

Syntax:

tail [-number_of_lines_to_print] [path]

4. sort : Sorts the lines alphabetically by default but there are many options available to modify the sorting

mechanism. Be sure to check out the main page to see everything it can do.

Syntax:

sort [-options] [path]

5. uniq : Removes duplicate lines. uniq has a limitation that it can only remove continuous duplicate

lines(although this can be fixed by the use of piping). Assuming we have the following data.

Syntax:

uniq [options] [path]

When applying uniq to sorted data, it removes the duplicate lines because, after sorting data, duplicate lines

come together.

6. wc : wc command gives the number of lines, words and characters in the data.

Syntax:

wc [-options] [path]

http://www.google.com/
https://www.geeksforgeeks.org/hostname-command-in-linux-with-examples/
https://www.geeksforgeeks.org/nslookup-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/
https://www.geeksforgeeks.org/head-command-linux-examples/
https://www.geeksforgeeks.org/tail-command-linux-examples/
https://www.geeksforgeeks.org/sort-command-linuxunix-examples/
https://www.geeksforgeeks.org/uniq-command-in-linux-with-examples/
https://www.geeksforgeeks.org/wc-command-linux-examples/

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 22

In above image the wc gives 4 outputs as:

 number of lines

 number of words

 number of characters

 path

7. grep : grep is used to search a particular information from a text file.

Syntax:

grep [options] pattern [path]

Below are the two ways in which we can implement grep.

8. tac : tac is just the reverse of cat and it works the same way, i.e., instead of printing from lines 1 through

n, it prints lines n through 1. It is just reverse of cat command.

Syntax:

tac [path]

9. sed : sed stands for stream editor. It allows us to apply search and replace operation on our data

effectively. sed is quite an advanced filter and all its options can be seen on its man page.

Syntax:

sed [path]

10. nl : nl is used to number the lines of our text data.

Syntax:

nl [-options] [path]

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/tac-command-in-linux-with-examples/
https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 23

UNIT – II

Linux: Introduction to shell, Types of shell's , example shell programs.

Process and CPU Scheduling - Process concepts and scheduling, Operations on processes, Cooperating

Processes, Threads, Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.

Shell Programming

The shell has similarities to the DOS command processor Command.com (actually Dos was design as a

poor copy of UNIX shell), it's actually much more powerful, really a programming language in its own

right.

A shell is always available on even the most basic UNIX installation. You have to go through the shell to

get other programs to run. You can write programs using the shell. You use the shell to administrate your

UNIX system. For example:

ls -al | more

is a short shell program to get a long listing of the present directory and route the output through the more

command.

What is a Shell?

A shell is a program that acts as the interface between you and the UNIX system, allowing you to enter
commands for the operating system to execute.

Here are some common shells.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 24

Introduction- Working with Bourne Shell

• The Bourne shell, or sh, was the default Unix shell of Unix Version 7. It was developed by Stephen

Bourne, of AT&T Bell Laboratories.

• A Unix shell, also called "the command line", provides the traditional user interface forthe Unix

operating system and for Unix-like systems. Users direct the operation of the computer by entering command

input as text for a shell to execute.

• There are many different shells in use. Theyare

– Bourne shell (sh)

– C shell (csh)

– Korn shell (ksh)Bourne Again shell (bash)

• When we issue a command the shell is the first agency to acquire the information. Itaccepts and

interprets user requests. The shell examines &rebuilds the commands &leaves the execution work to kernel.

The kernel handles the h/w on behalf ofthesecommands &all processes in the system.

• The shell is generally sleeping. It wakes up when an input is keyed in at the prompt. Thisinput is

actually input to the program that represents the shell.

Shell responsibilities

1. Program Execution

2. Variable and Filename Substitution

3. I/O Redirection

4. Pipeline Hookup

5. Environment Control

6. Interpreted Programming Language1.Program Execution:

• The shell is responsible for the execution of all programs that you request fromyourterminal.

• Each time you type in a line to the shell, the shell analyzes the line and thendetermineswhat to

do.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 25

• The line that is typed to the shell is known more formallyas the command line. The shell

scans this command line and determines the name of the program to be executed and what arguments

to pass to the program.

2. Variable and Filename Substitution:

• Like any other programming language, the shell lets you assign values to variables.

Whenever you specify one of these variables on the command line, preceded by adollar sign, the shell

substitutes the value assigned to the variable at that point.

3. I/O Redirection:

• It is the shell's responsibility to take care of input and output redirection on the command

line. It scans the command line for the occurrence of the special redirection characters <,

>, or >>.

4. Pipeline Hookup:

• Just as the shell scans the command line looking for redirection characters, it also looks for

the pipe character |. For each such character that it finds, it connects the standard output from the

command preceding the | to the standard input of the one following the|. It then initiates execution of

both programs.

5. Environment Control:

• The shell provides certain commands that let you customize your environment. Your

environment includes home directory, the characters that the shell displays to prompt you

to type in a command, and a list of the directories to be searched whenever you request that a

program be executed.

6. Interpreted Programming Language:

• The shell has its own built-in programming language. This language is interpreted, meaning

that the shell analyzes each statement in the language one line at a time and thenexecutes it. This differs

from programming languages such as C and FORTRAN, in which the programming statements are

typically compiled into a machine-executable form before they are executed.

• Programs developed in interpreted programming languages are typically easier to debug

and modify than compiled ones. However, they usually take much longer to execute than their compiled

equivalents.

Pipes connect processes together. The input and output of UNIX programs can be redirected.

Redirecting Output

The > operator is used to redirect output of a program. For example:ls -l > lsoutput.txt

redirects the output of the list command from the screen to the file lsoutput.txt.

To 0append to a file, use the >> operator.

Pipes and Redirection

ps >> lsoutput.txt

Redirecting Input

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 26

You redirect input by using the < operator. For example:more < killout.txt

Pipes

We can connect processes together using the pipe operator (|). For example, the following program

means run the ps program, sort its output, and save it in the file pssort.out

ps | sort > pssort.out

The sort command will sort the list of words in a textfile into alphbetical order according to theASCII

code set character order.

Here Documents

A here document is a special way of passing input to a command from a shell script. Thedocument
starts and ends with the same leader after <<. For example:

#!/bin/sh

cat < this is a heredocument

!FUNKY!

How It Works

It executes the here document as if it were input commands.

Running a Shell Script

You can type in a sequence of commands and allow the shell to execute them interactively, oryouu can

sotre these commands in a file which you can invoke as a program.

Interactive Programs

A quick way of trying out small code fragments is to just type in the shell script on the commandline.
Here is a shell program to compile only files that contain the string POSIX.

The hell as a Programming LanguageCreating a Script

To create a shell script first use a text editor to create a file containing the commands. Forexample,

type the following commands and save them as first.sh

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 27

Note: commands start with a #.

The line

#!/bin/sh

is special and tells the system to use the /bin/sh program to execute this program.

The command

exit 0

Causes the script program to exit and return a value of 0, which means there were not errors.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the script file as a

parameter, thus:/bin/sh first.sh

Or 2) change the mode of the script to executable and then after execute it by just typing itsname.

chmod +x first.shfirst.sh

Actually, you may need to type:

./first.sh to make the file execute unles the path variable has your directory in it.

Shell Syntax

The modern UNIX shell can be used to write quite large, structured programs.

Shell metacharacters

The shell consists of large no. of metacharacters. These characters plays vital role in Unixprogramming.

Types of metacharacters:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 28

1. File substitution

2. I/O redirection

3. Process execution

4. Quoting metacharacters

5. Positionalparameters

6. Special characters

7. Command substitution

Filename substitution:

These metacharacters are used to match the filenames in a directory.

Metacharacter significance

* matches any no. ofcharacters

? matches a single character

[ijk] matches a single character either i,j,k

[!ijk] matches a single character that is not an I,j,k

Shell Variables

Variables are generally created when you first use them. By default, all variables are considered and

stored as strings. Variable names are case sensitive.

U can define & use variables both in the command line and shell scripts. These variablesare called shell
variables.

No type declaration is necessary before u can use a shellvariable.

Variables provide the ability to store and manipulate the information with in the shellprogram. The

variables are completely under the control ofuser.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 29

Variables in Unix are of two types.

1) User-defined variables:

Generalized form:

variable=value.Eg: $x=10

$echo $x10

To remove a variable use unset.

$unset x

All shell variables are initialized to null strings by default. To explicitly set null valuesuse

x= or x=‗‘ or x=―‖

To assign multiword strings to a variable use

$msg=‗u have a mail‘

2) Environment Variables

 They are initialized when the shell script starts and normallycapitalized to distinguish them from user-

defined variables in scripts

 To display all variables in the local shell and their values, type the set command

 The unset command removes the variable from the current shell and subshell

Environment

Variables
Description

$HOME Home directory

$PATH List of directories to search for

commands

$PS1 Command prompt

$PS2 Secondary prompt

$SHELL Current login shell

$0 Name of the shell script

$# No . of parameters passed

$$ Process ID of the shell script

Command substitution and Shell commands:

r ead:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 30

 The read statement is a tool for taking input from the user i.e. making scripts interactive It is used

with one or more variables. Input supplied through the standard input is read into these variables.

$read name

What ever u entered is stored in the variablename. printf:

Printf is used to print formattedo/p. printf "format" arg1 arg2 ...Eg:

$ printf "This is a number: %d\n" 10This is a number: 10

$

Printf supports conversion specification characters like %d, %s ,%x

,%o…. Exit status of a command:

o Every command returns a value after execution .This value is called the exitstatus or return
value of a command.

o This value is said to be true if the command executes successfully and false if it fails.
o There is special parameter used by the shell it is the $?. It stores the exit status of a
command.

exit:

o The exit statement is used to prematurely terminate a program. When this statement is
encountered in a script, execution is halted and control is returned to the calling program- in most cases the
shell.
o U don‘t need to place exit at the end of every shell script because the shell knows when script
execution is complete.

o Set :

Set is used to produce the list of currently defined variables.

$set

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 31

Set is used to assign values to the positional parameters.

$set welcome to Unix

The do-nothing(:)Command

It is a null command.

 In some older shell scripts, colon was used at the start of a line to introduce acomment,
but modern scripts uses # now.

expr:

The expr command evaluates its arguments as an expression:

$ expr 8 + 6

$ x=`expr 12 / 4 ̀

$ echo $x3

export:
There is a way to make the value of a variable known to a sub shell, and that'sby exporting it

with the export command. The format of this command is

export variables

where variables is the list of variable names that you want exported. For any sub shells that get executed
from that point on, the value of the exported variables will bepassed down to the sub shell.

eval:

eval scans the command line twice before executing it. General form for evalis eval command-line

Eg:

$ cat last

eval echo \$$#

$ last one two three fourfour

${n}

If u supply more than nine arguments to a program, u cannot access the tenth and greater arguments with

$10, $11, and so on.

${n} must be used. So to directly access argument 10, you must write

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 32

${10}

Shift command:

The shift command allows u to effectively left shift your positional parameters. If u executethe command

Shift

whatever was previously stored inside $2 will be assigned to $1, whatever was previouslystored in $3 will

be assigned to $2, and so on. The old value of $1 will be irretrievably lost.

The Environment-Environment Variables

It creates the variable salutation, displays its value, and some parameter variables.

• When a shell starts, some variables are initialized from values in the environment. Here is a

sample of some ofthem.

Parameter Variables

• If your script is invoked with parameters, some additional variables are created.

Quoting

Normally, parameters are separated by white space, such as a space. Single quot marks can be used to

enclose values containing space(s). Type the following into a file called quot.sh

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 33

make sure to make it executable by typing the command:

< chmod a+xquot.sh The results of executing

the file is:

How It Works

The variable myvar is created and assigned the string Hi there. The content of the variable is displyed using

the echo $. Double quotes don't effect echoing the value. Single quotes and backslash do.

The test, or []Command

Here is how to check for the existance of the file fred.c using the test and using the []command.

You can even place the then on the same line as the if, if youu add a semicolon before theword then.

Here are the conditon types that can be used with the test command. There are stringcomparison.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 34

There are arithmetic comparison.

There are file conditions.

Control Structures

The shell has a set of control structures.

if

The if statement is vary similar other programming languages except it ends with a fi.if condition

then

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 35

else fi

statementsstatements

elif

the elif is better known as "else if". It replaces the else part of an if statement with another if

statement. You can try it out by using the following script.

#!/bin/sh

echo "Is it morning? Please answer yes or no"read timeofday

if [$ti0meofday = "yes"]then

echo "Good morning"elif [$timeofday = "no"]; thenecho "Good afternoon"

else

echo "Sorry, $timeofday not recognized. Enter yesor no" exit 1 fi

exit 0

How It Works

The above does a second test on the variable timeofday if it isn't equal to yes.

A Problem with Variables

If a variable is set to null, the statement

if [$timeofday = "yes"]if [= "yes"]

which is illegal. This problem can be fixed by using double quotes around the variable name. if [
"$timeofday" = "yes"]

.

for

The for construct is used for looping through a range of values, which can be any set of strings. The
syntax is:

for variable in valuesdo

statements

done
Try out the following script:

#!/bin/sh

for foo in bar fud 43do

echo $foo

done exit 0
When executed, the output should be:
bar fud043

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 36

How It Works

The above example creates the variable foo and assigns it a different value each time around thefor loop.

How It Works

Here is another script which uses the $(command) syntax to expand a list to chap3.txt, chap4.txt, and

chap5.txt and print the files.

#!/bin/sh

for file in $(ls chap[345].txt); dolpr $file

done0

while

While loops will loop as long as some condition exist. OF course something in the body statements of

the loop should eventually change the condition and cause the loop to exit. Here is the while loop syntax.

while condition do

statements

done

Here is a whil loop that loops 20 times.#!/bin/sh

foo=1

while ["$foo" -le 20]do

done exit 0

How It Works

echo "Here we go again" foo=$(($foo+1))

The above script uses the [] command to test foo for <= the value 20. The linefoo=$(($fo0o+1))

increments the value of foo each time the loop executes..

until

The until statement loops until a condition becomes true! Its syntax is:

until conditiondo

statements

done
Here is a script using until.

#!/bin/sh

until who | grep "$1" > /dev/nulldo

Sl0eep 60

done

now ring the bell and announce the expected user.

echo -e \\a

echo "**** $1 has just loogged in ****"exit 0

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 37

case

The case statement allows the testing of a variable for more then one value. The case statementends
with the word esac. Its syntax is:

case variable in

pattern [| pattern] ...) statements;;pattern [| pattern] ...) statements;;

...

esac

Here is a sample script using a case statement:

#!/bin/sh

echo "Is it morning? Please answer yes or no"read timeofday

case "$timeofday" in

"yes") echo "Good Morning";; "no") echo "Good Afternoon";;0"y") echo "Good Morning";; "n") echo
"Good Afternoon";;
*) echo "Soory, answer not recognized";;

esac exit 0

The value in the varaible timeofday is compared to various strings. When a match is made, the
associated echo command is executed.

Here is a case where multiple strings are tested at a time, to do the some action.case "$timeofday" in

"yes" | "y" | "yes" | "YES") echo "good Morning";;"n"* | "N"*) <echo "Good Afternoon";;

*) < echo "Sorry, answer not recognized";;
0esac

How It Works

The above has sever strings tested for each possible statement.

Here is a case statement that executes multiple statements for each case.case "$timeofday" in

"yes" | "y" | "Yes" | "YES")echo "Good Morning"

echo "Up bright and early this morning"

;;
[nN

]*) echo "Good Afternoon"

;;

esac

How It Works

*) echo "Sorry, answer not recognized" echo "Please answer yes or

noo" exit 1

;;

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 38

When a match is found to the variable value of timeofday, all the statements up to the ;; areexecuted.

Parameter Expansion

Using { } around a variable to protect it against expansion.#!/bin/sh

for i in 1 2do

my_secret_process ${i}_tmp
done

Here are some of the parameter expansion

How It Works

The try it out exercise uses parameter expansion to demonstrate how parameter expansion works.

Shell Script ExamplesExample

#!/bin/sh

echo "Is it morning? (Answer yes or no)"read timeofday

if [$timeofday = "yes"]; then

echo "Good Morning"

else

echo "Good afternoon"

fi exit 0

elif - Doing further Checks

#!/bin/sh

echo "Is it morning? Please answer yes or no"read timeofday

if [$timeofday = "yes"]; thenecho "Good Morning"

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 39

elif [$timeofday = "no"]; thenecho "Good afternoon"

else echo "Wrong answer! Enter yes or no"exit 1

fi exit 0

Process

A process is a program at the time of execution.

Differences between Process and Program

Process Program

Process is a dynamic object Program is a static object

Process is sequence of instruction

execution

Program is a sequence of instructions

Process loaded in to main memory Program loaded into secondarystorage

devices

Time span of process is limited Time span of program is unlimited

Process is a active entity Program is a passive entity

Process States

When a process executed, it changes the state, generally the state of process is determined

by the current activity of the process. Each process may be in one of the following states:

1. New : The process is being created.

2. Running : The process is being executed.

3. Waiting : The process is waiting for some event to occur.

4. Ready : The process is waiting to be assigned to a processor.

5. Terminated : The Process has finished execution.

Only one process can be running in any processor at any time, But many process may be

inready and waiting states. The ready processes are loaded into a “ready queue”.

Diagram of process state

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 40

a) New ->Ready : OS creates process and prepares the process to be executed, then OS

moved the process into ready queue.

b) Ready->Running : OS selects one of the Jobs from ready Queue and move themfrom ready to

Running.

c) Running->Terminated : When the Execution of a process has Completed, OS terminates that process

from running state. Sometimes OS terminates the process for some other reasons including Time exceeded,

memory unavailable, access violation, protection Error, I/O failure and soon.

d) Running->Ready : When the time slot of the processor expired (or) If the processor received any

interrupt signal, the OS shifted Running -> Ready State.

e) Running -> Waiting : A process is put into the waiting state, if the process need anevent occur (or) an

I/O Device require.

f) Waiting->Ready : A process in the waiting state is moved to readystate when the event for which it

has been Completed.

Process Control Block:

Each process is represented in the operating System by a Process Control Block.

It is also called Task Control Block. It contains many pieces of information associated with a specific

Process.

Process State

Program Counter

CPU Registers

CPU Scheduling Information

Memory – Management Information

Accounting Information

I/O Status Information

Process Control Block

1. Process State : The State may be new, ready, running, and waiting, Terminated…

2. Program Counter : indicates the Address of the next Instruction to be executed.

3. CPUregisters : registers include accumulators, stack pointers,

General purpose Registers…

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 41

4. CPU-Scheduling Info : includes a process pointer, pointers to

scheduling Queues, other scheduling parameters etc.

5. Memory management Info: includes page tables, segmentation tables, value ofbase and limit

registers.

6. Accounting Information: includes amount of CPU used, time limits, Jobs(or)Process numbers.

7. I/O Status Information: Includes the list of I/O Devices Allocated to the processes, list ofopen

files.

Threads:

A process is divide into number of light weight process, each light weight process is said to be a Thread. The

Thread has a program counter (Keeps track of which instruction to execute next), registers (holds its current

working variables), stack (execution History).

Thread States:

1. born State : A thread is just created.

2. ready state : The thread is waiting for CPU.

3. running : System assigns the processor to the thread.

4. sleep : A sleeping thread becomes ready after the designated sleep time expires.

5. dead : The Execution of the thread finished.

Egg: Word processor.

Typing, Formatting, Spell check, saving are threads.

Differences between Process and Thread

Process Thread

Process takes more time to create. Thread takes less time to create.

it takes more time to complete execution &

terminate.

Less time to terminate.

Execution is very slow. Execution is very fast.

It takes more time to switch b/w two

processes.

It takes less time to switch b/w two

threads.

Communication b/w two processes is difficult . Communication b/w two threads is

easy.

Process can’t share the same memory area. Threads can share same memory area.

System calls are requested to communicate

each other.

System calls are not required.

Process is loosely coupled. Threads are tightly coupled.

It requires more resources to execute. Requires few resources to execute.

Multithreading

A process is divided into number of smaller tasks each task is called a Thread. Number ofThreads with in a

Process execute at a time is called Multithreading.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 42

If a program, is multithreaded, even when some portion of it is blocked, the whole program is not blocked.

The rest of the program continues working If multiple CPU’s are available.

Multithreading gives best performance. If we have only a single thread, number of CPU’s available, No

performance benefits achieved.

 Process creation is heavy-weight while thread creation is light-weight Can simplify code, increase

efficiency

Kernels are generally multithreaded

CODE- Contains instruction

DATA- holds global variable

FILES-opening and closing files

REGISTER- contain information about CPU state

STACK-parameters, local variables, functions

PROCESS SCHEDULING:

CPU is always busy in Multiprogramming. Because CPU switches from one job to another job. But in

simple computers CPU sit idle until the I/O request granted.

scheduling is a important OS function. All resources are scheduled before use.(cpu, memory, devices…..)

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating systems

allow more than one process to be loaded into the executable memory ata time and the loaded process shares

the CPU using time multiplexing

. Scheduling Objectives

Maximize throughput.

Maximize number of users receiving acceptable response times.Be predictable.

Balance resource use.

Avoid indefinite postponement.

Enforce Priorities.

Give preference to processes holding key resources

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 43

SCHEDULING QUEUES: people live in rooms. Process are present in rooms knows as queues. There are

3types

1. job queue: when processes enter the system, they are put into a job queue, which consists all

processes in the system. Processes in the job queue reside on mass storage and await the allocation of main

memory.

2. ready queue: if a process is present in main memory and is ready to be allocated tocpu for execution,

is kept in ready queue.

3. device queue: if a process is present in waiting state (or) waiting for an i/o event tocomplete is said to

bein device queue.(or)

The processes waiting for a particular I/O device is called device queue.

Schedulers : There are 3 schedulers

1. Long term scheduler.

2. Medium termscheduler

3. Short term scheduler.

Scheduler duties:

 Maintains the queue.

 Select the process from queues assign to CPU.

Types of schedulers

1. Long term scheduler:

select the jobs from the job pool and loaded these jobs into main memory (ready queue).Long term scheduler

is also called job scheduler.

2. Short term scheduler:

select the process from ready queue, and allocates it to the cpu.

If a process requires an I/O device, which is not present available then process enters devicequeue.

short term scheduler maintains ready queue, device queue. Also called as cpu scheduler.

3. Medium term scheduler: if process request an I/O device in the middle of the execution, then the

process removed from the main memory and loaded into the waiting queue. When the I/O operation completed,

then the job moved from waiting queue to ready queue. These two operations performed by medium term

scheduler.

Context Switch: Assume, main memory contains more than one process. If cpu is executing a process, if time

expires or if a high priority process enters into main memory, then the scheduler saves information about

current process in the PCB and switches to execute the another process. The concept of moving CPU by

scheduler from one process to other process is known as context switch.

Non-Preemptive Scheduling: CPU is assigned to one process, CPU do not release until the competition of

that process. The CPU will assigned to some other process only after the previous process has finished.

Preemptive scheduling: here CPU can release the processes even in the middle of the execution. CPU

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 44

received a signal from process p2. OS compares the priorities of p1 ,p2. If p1>p2, CPU continues the execution

of p1. If p1<p2 CPU preempt p1 and assigned to p2.

Dispatcher: The main job of dispatcher is switching the cpu from one process to another process. Dispatcher

connects the cpu to the process selected by the short term scheduler.

Dispatcher latency: The time it takes by the dispatcher to stop one process and start another process is known

as dispatcher latency. If the dispatcher latency is increasing, then the degree of multiprogramming decreases.

SCHEDULING CRITERIA:

1. Throughput: how many jobs are completed by the cpu with in a timeperiod.

2. Turn around time : The time interval between the submission of the process and time of the

completion is turn around time.

TAT = Waiting time in ready queue + executing time + waiting time in waiting queue forI/O.

3. Waiting time: The time spent by the process to wait for cpu to beallocated.

4. Response time: Time duration between the submission and firstresponse.

5. Cpu Utilization: CPU is costly device, it must be kept as busy aspossible. Eg: CPU efficiency is

90% means it is busy for 90 units, 10 units idle.

CPU SCHEDULINGALGORITHMS:

1. First come First served scheduling: (FCFS): The process that request the CPU first

is holds the cpu first. If a process request the cpu then it is loaded into the ready queue, connect

CPU to that process.

Consider the following set of processes that arrive at time 0, the length of the cpu burst time given

in milli seconds.

burst time is the time, required the cpu to execute that job, it is in milli seconds.

Process Burst time(milliseconds)

P1 5

P2 24

P3 16

P4 10

P5 3

Average turn around time:

Turn around time= waiting time + burst time

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 45

Turn around time for p1= 0+5=5.

Turn around time for

p2=5+24=29 Turn around time

for p3=29+16=45 Turn around

time for p4=45+10=55 Turn

around time for p5= 55+3=58

Average turn around time= (5+29++45+55+58/5) = 187/5 =37.5 millisecounds

Average waiting time:

Waiting time for p1=0

Waiting time for p2=5-0=5

Waiting time for p3=29-0=29

Waiting time for p4=45-0=45

Waiting time for p5=55-0=55

Average waiting time= 0+5+29+45+55/5 = 125/5 = 25 ms.

Average Response Time :

Formula : First Response - Arrival

Time Response Time for P1 =0

Response Time for P2 => 5-0 = 5

Response Time for P3 => 29-0 = 29

Response Time for P4 => 45-0 = 45

Response Time for P5 => 55-0 = 55

Average Response Time => (0+5+29+45+55)/5 =>25ms

1) First Come FirstServe:

It is Non Primitive Scheduling Algorithm.

PROCESS BURST

TIME

ARRIVAL

TIME

P1 3 0

P2 6 2

P3 4 4

waiting time= starting time- arrival time

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 46

P4 5 6

P5 2 8

Process arrived in the order P1, P2, P3, P4, P5.

P1 arrived at 0 ms.

P2 arrived at 2 ms.

P3 arrived at 4 ms.

P4 arrived at 6 ms.

P5 arrived at 8 ms.

Average Turn Around Time

Formula : Turn around Time =: waiting time + burst time

Turn Around Time for P1 => 0+3= 3

Turn Around Time for P2 => 1+6 = 7

Turn Around Time for P3 => 5+4 = 9

Turn Around Time for P4 => 7+ 5= 12

Turn Around Time for P5 => 2+ 10=12

Average Turn Around Time => (3+7+9+12+12)/5 =>43/5 = 8.50 ms.

Average Response Time :

Formula : Response Time = First Response - Arrival Time

Response Time of P1 = 0

Response Time of P2 => 3-2 = 1

Response Time of P3 => 9-4 = 5

Response Time of P4 => 13-6 = 7

Response Time of P5 => 18-8 =10

Average Response Time => (0+1+5+7+10)/5 => 23/5 = 4.6 ms

Advantages: Easy to Implement, Simple.

Disadvantage: Average waiting time is very high.

2) Shortest Job First Scheduling (SJF):

Which process having the smallest CPU burst time, CPU is assigned to that process . If

two process having the same CPU burst time, FCFS is used.

PROCESS CPU BURST TIME

P1 5

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 47

P2 24

P3 16

P4 10

P5 3

P5 having the least CPU burst time (3ms). CPU assigned to that (P5). After completion of

P5 short term scheduler search for nest (P1).......

Average Waiting Time :

Formula = Staring Time - Arrival Time

waiting Time for P1 => 3-0 = 3

waiting Time for P2 => 34-0 = 34

waiting Time for P3 => 18-0 = 18

waiting Time for P4 =>8-0=8

waiting time for P5=0

Average waiting time => (3+34+18+8+0)/5 => 63/5 =12.6 ms

Average Turn Around Time :

Formula = waiting Time + burst Time

Turn Around Time for P1 => 3+5 =8

Turn Around for P2 => 34+24 =58

Turn Around for P3 => 18+16 = 34

Turn Around Time for P4 => 8+10 =18

Turn Around Time for P5 => 0+3 = 3

Average Turn around time => (8+58+34+18+3)/5 => 121/5 = 24.2 ms

Average Response Time :

Formula : First Response - Arrival Time

First Response time for P1 =>3-0 = 3

First Response time for P2 => 34-0 = 34

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 48

First Response time for P3 => 18-0 = 18

First Response time for P4 => 8-0 = 8

First Response time for P5 = 0

Average Response Time => (3+34+18+8+0)/5 => 63/5 = 12.6 ms

SJF is Non primitive scheduling algorithm

Advantages : Least average waiting time

Least average turn around time Least

average response time

Average waiting time (FCFS) = 25 ms

Average waiting time (SJF) = 12.6 ms 50% time saved in SJF.

Disadvantages:

 Knowing the length of the next CPU burst time is difficult.

 Aging (Big Jobs are waiting for long time for CPU)

3) Shortest Remaining Time First (SRTF);

This is primitive scheduling algorithm.

Short term scheduler always chooses the process that has term shortest remaining time. When a

new process joins the ready queue , short term scheduler compare the remaining time of executing

process and new process. If the new process has the least CPU burst time, The scheduler selects

that job and connect to CPU. Otherwise continue the old process.

PROCESS BURST TIME ARRIVAL TIME

P1 3 0

P2 6 2

P3 4 4

P4 5 6

P5 2 8

P1 arrives at time 0, P1 executing First , P2 arrives at time 2. Compare P1 remaining time and P2 (3-2 =

1) and 6. So, continue P1 after P1, executing P2, at time 4, P3 arrives, compare P2 remaining time (6-1=5

) and 4 (4<5) .So, executing P3 at time 6, P4 arrives. Compare P3 remaining time and P4 (4-

2=2) and 5 (2<5). So, continue P3 , after P3, ready queue consisting P5 is the least out of three.

So execute P5, next P2, P4.

FORMULA : Finish time - Arrival

Time Finish Time for P1 => 3-0 = 3

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 49

Finish Time for P2 => 15-2 = 13

Finish Time for P3 => 8-4 =4 Finish

Time for P4 => 20-6 = 14 Finish

Time for P5 => 10-8 = 2

Average Turn around time => 36/5 = 7.2 ms.

4)ROUND ROBIN SCHEDULING ALGORITHM :

It is designed especially for time sharing systems. Here CPU switches between the processes.

When the time quantum expired, the CPU switched to another job. A small unit of time, called

a time quantum or time slice. A time quantum is generally from 10 to 100 ms. The time quantum

is generally depending on OS. Here ready queue is a circular queue. CPU scheduler picks the

first process from ready queue, sets timer to interrupt after one time quantum and dispatches the

process.

PROCESS BURST TIME

P1 30

P2 6

P3 8

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 50

AVERAGE WAITING TIME :

Waiting time for P1 => 0+(15-5)+(24-20) => 0+10+4 = 14

Waiting time for P2 => 5+(20-10) => 5+10 =

15 Waiting time for P3 => 10+(21-15) => 10+6

= 16 Average waiting time => (14+15+16)/3 =

15 ms.

AVERAGE TURN AROUND TIME :

FORMULA : Turn around time = waiting time + burst

TimeTurn around time for P1 => 14+30 =44

Turn around time for P2 => 15+6 =

21 Turn around time for P3 => 16+8

= 24

Average turn around time => (44+21+24)/3 = 29.66 ms

5) PRIORITY SCHEDULING :

PROCESS BURST

TIME

PRIORITY

P1 6 2

P2 12 4

P3 1 5

P4 3 1

P5 4 3

P4 has the highest priority. Allocate the CPU to process P4 first next P1, P5, P2, P3.

AVERAGE WAITING TIME :

Waiting time for P1 => 3-0 =3

Waiting time for P2 => 13-0 = 13

Waiting time for P3 => 25-0 = 25

Waiting time for P4 => 0

Waiting time for P5 => 9-0 =9

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 51

Average waiting time => (3+13+25+0+9)/5 = 10 ms

AVERAGE TURN AROUND TIME :

Turn around time for P1 =>3+6 = 9

Turn around time for P2 => 13+12=

25Turn around time for P3 => 25+1

= 26 Turn around time for P4 =>

0+3= 3 Turn around time for P5 =>

9+4 = 13

Average Turn around time => (9+25+26+3+13)/5 = 15.2 ms

Disadvantage: Starvation

Starvation means only high priority process are executing, but low priorityprocess are waiting for the

CPU for the longest period of the time.

Multiple – processor scheduling:

When multiple processes are available, then the scheduling gets more complicated, because there is

more than one CPU which must be kept busy and in effective use at all times.

Load sharing resolves around balancing the load between multiple processors. Multi processor systems

may be heterogeneous (It contains different kinds of CPU’s) (or) Homogeneous(all the same kind of

CPU).

1) Approaches to multiple-processor schedulinga)Asymmetric multiprocessing

One processor is the master, controlling all activities and running all kernel code,while the other runs

only user code.

b)Symmetric multiprocessing:

Each processor schedules its own job. Each processor may have its own private queue of ready

processes.

2) Processor Affinity

Successive memory accesses by the process are often satisfied in cache memory. what happens if the

process migrates to another processor. the contents of cache memory must be invalidated for the first

processor, cache for the second processor must be repopulated. Most Symmetric multi processor

systems try to avoid migration of processes from one processor to another processor, keep a process

running on the same processor. This is called processor affinity.

a) Soft affinity:

Soft affinity occurs when the system attempts to keep processes on the same processor but makes no

guarantees.

b) Hard affinity:

Process specifies that it is not to be moved between processors.

3) Load balancing:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE 52

One processor wont be sitting idle while another is overloaded. Balancing can be achived through

push migration or pull migration.

Push migration:

Push migration involves a separate process that runs periodically(e.g every 200 ms) and moves

processes from heavily loaded processors onto less loaded processors. Pull migration:

Pull migration involves idle processors taking processes from the ready queues of the otherprocessors.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 53

UNIT-III

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling

Deadlocks, DeadlockPrevention, Deadlock Avoidance, Deadlock Detection, and

Recovery from Deadlock

Process Management and Synchronization - The Critical Section Problem,

Synchronization Hardware, Semaphores, and Classical Problems of

Synchronization, Critical Regions, Monitors

DEADLOCKS

System model:

A system consists of a finite number of resources to be distributed among a number of

competing processes. The resources are partitioned into several types, each consisting

of some number of identical instances. Memory space, CPU cycles, files, I/O devices

are examples of resource types. If a system has 2 CPUs, then the resource type CPU

has 2 instances.

A process must request a resource before using it and must release the resource after

using it. A process may request as many resources as it requires to carry out its task.

The number of resources as it requires to carry out its task. The number of resources

requested may not exceed the total number of resources available in the system. A

process cannot request 3 printers if the system has only two.

A process may utilize a resource in the following sequence:

(I) REQUEST: The process requests the resource. If the request cannot be

granted immediately (if the resource is being used by another process), then

therequesting process must wait until it can acquire theresource.

(II) USE: The process can operate on the resource .if the resource is a printer,

the process can print on theprinter.

(III) RELEASE: The process release theresource.

For each use of a kernel managed by a process the operating system checks that the

process has requested and has been allocated the resource. A system table records

whether each resource is free (or) allocated. For each resource that is allocated, the

table also records the process to which it is allocated. If a process requests a resource

that is currently allocated to another process, it can be added to a queue of processes

waiting for this resource.

To illustrate a deadlocked state, consider a system with 3 CDRW drives. Each of 3

processes holds one of these CDRW drives. If each process now requests another drive,

the 3 processes will be in a deadlocked state. Each is waiting for the event “CDRW is

released” which can be caused only by one of the other waiting processes. This example

illustrates a deadlock involving the same resourcetype.

Deadlocks may also involve different resource types. Consider a system with one

printer and one DVD drive. The process Pi is holding the DVD and process Pj is

holding the printer. If Pi requests the printer and Pj requests the DVD drive, a deadlock

occurs.

DEADLOCK CHARACTERIZATION:

In a deadlock, processes never finish executing, and system resources are tied up,

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 54

preventing other jobs from starting.

NECESSARY CONDITIONS:

A deadlock situation can arise if the following 4 conditions hold simultaneously in a system:

1. MUTUAL EXCLUSION: Only one process at a time can use the

resource. If another process requests that resource, the requesting process must be

delayed until theresource has beenreleased.

2. HOLD AND WAIT: A process must be holding at least one

resource and waitingto acquire additional resources that are currently

being held by otherprocesses.

3. NO PREEMPTION: Resources cannot be preempted. A resource

can be released only voluntarily by the process holding it, after that process

has completed itstask.

4. CIRCULAR WAIT: A set {P0,P1,…..Pn} of waiting processes must

exist such that P0 is waiting for resource held by P1, P1 is waiting for a resource

held by P2,……,Pn-1 is waiting for a resource held by Pn and Pn is waiting for a

resource held byP0.

RESOURCE ALLOCATION GRAPH

Deadlocks can be described more precisely in terms of a directed graph called a system

resource allocation graph. This graph consists of a set of vertices V and a set of edges E. the

set of verticesV is partitioned into 2 different types of nodes:

P = {P1, P2….Pn}, the set consisting of all the active processes in the system. R= {R1,

R2….Rm}, the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi ->Rj. It signifies that

process Pi has requested an instance of resource type Rj and is currently waiting for that

resource.

A directed edge from resource type Rj to process Pi is denoted by Rj ->Pi, it signifies that

an instance of resource type Rj has been allocated to process Pi.

A directed edge Pi ->Rj is called a requested edge. A directed edge Rj->Piis called an

assignmentedge.

We represent each process Pi as a circle, each resource type Rj as a rectangle. Since resource

type Rj may have more than one instance. We represent each such instance as a dot within

the rectangle. A request edge points to only the rectangle Rj. An assignment edge must also

designate one of the dots in therectangle.

When process Pi requests an instance of resource type Rj, a request edge is inserted in the

resource allocation graph. When this request can be fulfilled, the request edge is

instantaneously transformed to an assignment edge. When the process no longer needs

access to the resource, it releases the resource, as a result, the assignment edge is deleted.

The sets P, R, E:

P= {P1, P2, P3}

R= {R1, R2, R3, R4}

E= {P1 ->R1, P2 ->R3, R1 ->P2, R2 ->P2, R2 ->P1, R3 ->P3}

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 55

One instance of resource type R1

Two instances of resource type R2 One instance of resource type R3 Three instances of

resource type R4 PROCESS STATES:

Process P1 is holding an instance of resource type R2 and is waiting for an instance of

resourcetype R1.

Process P2 is holding an instance of R1 and an instance of R2 and is waiting for instance

of R3.Process P3 is holding an instance of R3.

If the graph contains no cycles, then no process in the system is deadlocked. Ifthe graph

does contain a cycle, then a deadlock may exist.

Suppose that process P3 requests an instance of resource type R2. Since no resource

instance iscurrently available, a request edge P3 ->R2 is added to the graph.

2 cycles:

P1 ->R1 ->P2 ->R3 ->P3 ->R2 ->P1P2 ->R3 ->P3 ->R2 ->P2

Processes P1, P2, P3 are deadlocked. Process P2 is waiting for the resource R3, which is held

byprocess P3.process P3 is waiting for either process P1 (or) P2 to release resource R2. In

addition,process P1 is waiting for process P2 to release resource R1.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 56

We also have a cycle: P1 ->R1 ->P3 ->R2 ->P1

However there is no deadlock. Process P4 may release its instance of resource type R2.

Thatresource can then be allocated to P3, breaking the cycle.

DEADLOCK PREVENTION

For a deadlock to occur, each of the 4 necessary conditions must held. By ensuring that at

leastone of these conditions cannot hold, we can prevent the occurrence of a deadlock.

Mutual Exclusion – not required for sharable resources; must hold for non sharable

resources

Hold and Wait – must guarantee that whenever a process requests a resource, it does not

hold any other resources

o Require process to request and be allocated all its resources before it begins
execution, or allow process to request resources only when the process hasnone

o Low resource utilization; starvation possible
No Preemption –

o If a process that is holding some resources requests another resource that
cannot be immediately allocated to it, then all resources currently being held are released

o Preempted resources are added to the list of resources for whichthe process is
waiting

o Process will be restarted only when it can regain its old resources, aswell as
the new ones that it is requesting

Circular Wait – impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration Deadlock Avoidance

Requires that the system has some additional a priori information available

 Simplest and most useful model requires that each process declare the

maximum number

of resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the resource-

allocation state to ensure that there can never be a circular-wait condition

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 57

 Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes .

Safe State

 When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes in

the systems such that for each Pi, the resources that Pi can still request can be satisfied by

currently available resources + resources held by all the Pj, with j <I

That is:

o If Pi resource needs are not immediately available, then Pi can wait until all
Pj have finished

o When Pj is finished, Pi can obtain needed resources, execute,return allocated
resources, and terminate

o When Pi terminates, Pi +1 can obtain its needed resources,
and so on If a sys tem is in safe state no deadlocks

If a system is in uns afe state possibility of deadlock Avoidance ensure

that a system will never enter an unsafe stateAvoidance algorithms

Single instance of a resource type

o Use a resource-allocation graph Multiple instances of a resource type

o Use the banker’s algorithm
Resource-Allocation Graph Scheme

Claim edgePiÆRj indicated that process Pj may request resource Rj;represented by a

dashed line

Claim edge converts to request edge when a process requests a resource Request edge

converted to an assignment edge when the resource is allocatedto the process When a

resource is released by a process, assignment edge reconverts to a claim edge Resources

must be claimed a priori in the system

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 58

Unsafe State In Resource-Allocation Graph

Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a finite amount of time Let n

= number of processes, and m = number of resources types.

Available: Vector of length m. If available [j] = k, there are k instances of resource type

Rjavailable

Max: n x m matrix. If Max [i,j] = k, then process Pimay request at most k

instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currentlyallocated k instances of

Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of

Rjto complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,respectively.

2. Initialize: Work = Available

Finish [i] = false fori = 0, 1, …,n- 1

3. Find an isuch that both:

(a) Finish [i] = false

(b) Needi=Work

If no such iexists, go to step 4

4. Work = Work + AllocationiFinish[i] = true

go to step 2

5. IfFinish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti[j] = k then process Pi wants

k instances of resource type Rj

1. If Requesti£Needigo to step 2. Otherwise,

raise error condition, since processhas exceeded its

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 59

maximum claim

2. If Requesti£Available, go to step 3.

Otherwise Pi must wait, since resources are not

available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available –

Request; Allocationi=

ationi

 Alloc

+ Requesti;Needi=Needi – Requesti;

o If safe the resources are allocated to Pi

o If unsafe Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm(REFER CLASS NOTES)

consider 5 processes P0 through

P4; 3 resourcetypes:

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocati
on

Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Σ The content of the matrix Need is defined to be Max

– Allocation NeedA B C

The system is in a safe state since the sequence <P1, P3, P4, P2, P0>

satisfies safety criteria

P1 Request (1,0,2)

Check that Request £ Available (that i s, (1,0,2) £ (3,3,2) true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

requirement

Deadlock Detection

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 60

Allow system to enter deadlock stateDetection algorithm

Recovery scheme

Single Instance of Each Resource Type

Maintain wait-for graphNodes are processes PiÆP

jif Piis waiting forPj

Periodically invoke an algorithm that searches for a cycle in the graph. If there is a

cycle,there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2 operations,where n is

the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-

for graph

Several Instances of a Resource Type

Available: A vector of length m indicates the number of available resources of each type.

Allocation: An n x m matrix defines the number of resources of each type currently allocated

to each process.

Request: An n x m matrix indicates the current request of each process.

If Request [i][j] = k, then process Pi is requesting k more instances of resource type.Rj.

Detection Algorithm

Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationiπ 0, then Finish[i] = false; otherwise,

Finish[i] = true

2. Find an index isuch that both:

(a) Finish[i] == false

(b) Requesti£Work

If no such i exists, go to step 4

3. Work = Work + Allocationi Finish[i] = true

go to step 2

4. If Finish[i] == false, for some i, 1 £i£n, then the system is in deadlock

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 61

state. Moreover, if

Finish[i] == false, then Pi is deadlocked

Recovery from Deadlock:

Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle is eliminated In which order should we

choose to abort?

o Priority of the process

o How long process has computed, and how much longer to completion

o Resources the process has used

o Resources process needs to complete

o How many processes will need to be terminated

o Is process interactive or batch?
Resource Preemption

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state Starvation – same process

may always be picked as victim, include numberof rollback in cost factor

Process Management And Synchronization:

In a single processor multiprogramming system the processor switches between thevarious jobs until

to finish the execution of all jobs. These jobs will share the processor time to get the simultaneous

execution. Here the overhead is involved in switching back and forth between processes.

Critical Section Problem

Consider a system consisting of n processes {P0, P1, …, Pn - 1}. Each process hasa segment of code

called critical section. In which the process may be changing common variables. Updating a table,

writing a file, etc., when one process is executing in its critical section, no other process is allowed

into its critical section.

Design a protocol in such a way that the processes can cooperate each other.

Requirements:-

• Mutual exclusion - Only one process can execute their critical sections at any time.

• Progress - If no process is executing in its critical section, any other process can enter based on the

selection.

• Bounded waiting - Bounded waiting bounds on the number of times that the other processes are

allowed to enter their critical sections after a process has made a request to enter into its critical section

and before that the request is granted.

General structure of a process:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 62

Synchronization With Hardware

Certain features of the hardware can make programming task easier and it will alsoimprove system efficiency

in solving critical-section problem. For achieving this in uniprocessor environment we need to disable the

interrupts when a shared variable is being modified. Whereas in multiprocessor environment disabling the

interrupts isa time consuming process and system efficiency also decreases.

Syntax for interrupt disabling process

Code:

Special Hardware Instructions

For eliminating the problems in interrupt disabling techniques particularly in multiprocessor environment we

need to use special hardware instructions. In a multiprocessor environment, several processors share access

to a common main memory. Processors behave independently. There is no interrupt mechanism between

processors. At a hardware level access to a memory location, excludes anyother access to that same location.

With this foundation designers have proposed several machine instructions that carry out two actions

automatically such as reading and writing or reading and testing of a single memory location.

Most widely implemented instructions are:

• Test-and-set instruction

• Exchange instruction

Test-and-set Instruction

Test-and-set instruction executes automatically. If two test-and-set instructions are executed simultaneously,

each on a different CPU, then they will execute sequentially. That is access to a memory

repeat

disable interrupts;

critical section;

enable interrupts;

remainder section>

forever.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 63

location excludes any other access to thatsame location which is shared one.

Implementation

Code:

Exchange Instruction

A global boolean variable lock is declared and is initialized to false.

Code:

function Test-and-set (var i : integer) : boolean;

begin

if i = 0 then

begin

i : = 1;

Test-and-set := true

end

else

Test-and-set: = false

end.

Var waiting : array [0 ... n - 1] of boolean

lock : boolean

Procedure Exchange (Var a, b : boolean);

var temp:boolean;

begin temp: = a;

a : = b;

b: = temp;

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 64

Properties of the Machine-instruction Approach

Advantages

• It is applicable to any number of processes on either a single processor or multipleprocessors which

are sharing main memory.

• It is simple and easy to verify.

• Support multiple critical sections.

Disadvantages

• Busy-waiting is employed.

• Starvation is possible, because selection of a waiting process is arbitrary.

• Deadlock situation may rise.

Semaphores

The above solution to critical section problem is not easy to generalize to more complex problems. For

overcoming this problem a synchronization tool called a‘semaphore’ is used. A semaphore ‘S’ is an integer

variable. It is accessed only

through two standard atomic operations ‘wait’ and ‘signal’. These operations can betermed as P and V.

Principle

Two or more processes can cooperate by means of simple signals, such that a process can be forced to stop at

a specified place until it has received a specific signal. For signaling, special variables called semaphores are

used. To transmit a signal by semaphores, a process is to execute the primitive signal (s). To receive asignal

by semaphores, a process executes the primitive wait (s). If the corresponding signal has not yet been

transmitted; the process is suspended until the transmission takes place.

Operations

• A semaphore may be initialized to a non-negative value.

• The ‘wait’ operation decrements the semaphore value. If the value becomes negative, then the

process executing the wait is blocked.

end;

repeat

key:= true;

repeat

Exchange (lock, key);

until key = false;

critical section

lock: = false;

remainder section

until false;

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 65

• The signal operation increments the semaphore value. If the value is not positive,then a process

blocked by a wait operation is unblocked.

No-op stands for no operation.

Code:

Usage

To deal with the n-process critical-section problem ‘n’ processes share a semaphore by initializing

mutex to 1.

Code:

Another usage of semaphores is to solve various synchronization problems. For example,

concurrently running processes

Code:

By initializing synch to zero (0), execute S2 only after P1 has invoked signal (synch),which is after S1.

Implementation

In the above semaphore definition the waiting process trying to enter its critical section must loop continuously

in the entry code.This continuous looping in the entrycode is called busy waiting.Busy waiting wastes CPU

cycles, this type of semaphoreis called spinlock. These spinlocks are useful in multiprocessor systems. No

context switch is required when a process waits on a lock. Context switch may take

wait (s) : while S = 0 do no-op

S: = S - 1;

Signal (s) : S : = S + 1;

repeat

wait (mutex);

critical section

signal (mutex);

remainder section

until false

P1 with a statement S1.

S1;

Signal (synch);

and P2 with a statement S2

wait (synch);

S2;

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 66

considerable time. Thus when locks are expected to be held for short times, spinlocks are useful.

When a process executes wait operation and finds that the semaphore value is not positive, it must wait.

However, rather than busy waiting, the process can block itself, and restart by wakeup when some other

process executes a signal operation.That is wakeup operation changes the process from waiting to ready.

Binary Semaphore

Earlier semaphore is known as counting semaphore, since its integer value can range over an unrestricted

domain, whereas a Binary semaphore value can range between 0 and 1. A binary semaphore is simpler to

implement than counting semaphore. We implement counting semaphore (s) in terms of binary semaphores

with the following data structures.

Code:

initially S1 = S3 = 1, S2 = 0

value of C is the initial value of the counting semaphore ‘S’.

Wait operation

Code:

Signal operation

Code:

Var S1: binary-semaphore;

S2: binary-semaphore;

S3: binary-semaphore;

C: integer;

wait (S3);

wait (S1);

C: = C - 1;

if C < 0 then

begin

signal (S1);

wait (S2);

end

else

signal (S1);

signal (S3);

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 67

Classical Problems Of Synchronization

For solving these problems use Semaphores concepts. In these problems communication is to takes place

between processes and is called ‘Inter ProcessCommunication (IPC)’.

1) Producer-Consumer Problem

Producer-consumer problem is also called as Bounded-Buffer problem. Pool consists of n buffers, each

capable of holding one item. Mutex semaphore is initialized to ‘1’. Empty and full semaphores count the

number of empty and full

buffers, respectively. Empty is initialized to ‘n’ and full is initialized to ‘0’ (zero). Here one or more producers

are generating some type of data and placing these in a buffer. A single consumer is taking items out of the

buffer one at a time. It prevents the overlap of buffer operations.

Producer Process

Code:

Consumer Process

Code:

wait (S1);

C: = C + 1;

if C = 0 then

signal (S2);

signal (S1);

repeat

...

produce an item in next P

...

wait (empty);

wait (mutex);

...

add next P to buffer

...

signal (mutex);

signal (full);

until false;

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 68

With these codes producer producing full buffers for the consumer. Consumer

producing empty buffers for the producer.

2) Dining-Philosophers Problem:-

Dining-pilosophers problem is posed by Disjkstra in 1965. This problem is very simple. Five philosophers

are seated around a circular table. The life of each philosopher consists of thinking and eating. For eating

five plates are there, one for each philosopher. There is a big serving bowl present in the middle of the table

with enough food in it. Only five forks are available on the whole. Each philosopher needs to use two forks

on either side of the plate to eat food.

Now the problem is algorithm must satisfy mutual exclusion (i.e., no two philosohers can use the

same fork at the same time) deadlock and starvation.

For this problem various solutions are available.

1. Each philosopher picks up first the fork on the left and then the fork on the right. After

eating two forks are replaced on the table. In this case if all the philosophers are hungry all will sit

repeat

wait (full);

wait (mutex);

...

remove an item from buffer to next C

...

signal (mutex);

signal (empty);

...

Consume the item in next C

...

until false;

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 69

down and pick up the fork on their left and all reach out for the other fork, which is not there. In this

undegnified position, all philosophers will starve.It is the deadlock situation.

2. Buy five additional forks

3. Eat with only one fork

4. Allow only four philosophers at a time, due to this restriction at least one philosopherwill have two

forks. He will eat and then replace, then there replaced forks are utilized by the other philosophers

(washing of the forks is implicit).

5. Allow philosopher to pick up the two forks if both are available.

6. An asymmetric solution is, an odd philosopher picks up first their left fork and then their right side

fork whereas an even philosopher picks up their right side fork first and then their left side fork.

Code for the fourth form of solution is as follows:
Program dining philosophers;

Code:

3) Readers and Writers Problem:-

Var fork: array [0 ... 4] of semaphore (: = 1);

room : semaphore (: = 4);

i : integer;

procedure philosopher (i : integer);

begin

repeat

think;

wait (room);

wait (fork [i]);

wait (fork [(i + 1) mod 5]);

eat;

signal (fork [(i + 1) mod 5]);

signal (fork [i])

signal (room)

forever

end;

begin

philosopher (0);

philosopher (1);

philosopher (2);

philosopher (3);

philosopher (4);

end.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 70

wait (wrt);

...

writing is performed

...

signal (wrt);

A data object (i.e., file or record) is to be shared among several concurrent processes. Some of these processes

may want only to read the content of the shared object, whereas others may want to update (i.e., read and

write) the sharedobject.

In this context if two readers access the shared data object simultaneously then no problem at all. If a writer

and some other process (either reader or writer) access theshared object simultaneously then conflict will

raise.

For solving these problems various solutions are there:-

1. Assign higher priorities to the reader processes, as compared to the writerprocesses.

2. The writers have exclusive access to the shared object.

3. No reader should wait for other readers to finish. Here the problem is writers maystarve.

4. If a writer is waiting to access the object, no new readers may start reading. Herereaders may

starve.

General structure of a writer process

Code:

General structure of a reader process

Code:

3) Sleeping Barber Problem:-

wait (mutex);

readcount: = readcount + 1;

if readcount = 1 then wait (wrt);

signal (mutex);

...

reading is performed

...

wait (mutex);

read count: = readcount - 1;

if readcount = 0 then signal (wrt);

signal (mutex);

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 71

A barber shop has one barber chair for the customer being served currently and few chairs for the

waiting customers (if any). The barber manages his time efficiently.

1. When there are no customers, the barber goes to sleep on the barber chair.

2. As soon as a customer arrives, he has to wake up the sleeping barber, and ask for ahair cut.

3. If more customers arrive whilst the barber is serving a customer, they either sit downin the waiting

chairs or can simply leave the shop.

For solving this problem define three semaphores

1. Customers — specifies the number of waiting customers only.

2. Barber — 0 means the barber is free, 1 means he is busy.

3. Mutex — mutual exclusion variable.

Code:
Define Chairs 4 typedef

int semaphore; semaphore

customers = 0; semaphore

barber = 0; semaphore mutex

= 1;

int waiting = 0; Void

barber (Void)

{

while (TRUE)

{

waiting = waiting - 1;

signal (barber);

cut-hair();

}

}

Void customer (void)

{

if (waiting < chairs)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 72

{

}

else

{

}

waiting = waiting + 1;

signal (customers); get-

hair cut();

wait (mutex);

Define Chairs 4

typedef int semaphore;

semaphore customers = 0;

semaphore barber = 0;

semaphore mutex = 1;

int waiting = 0;

Void barber (Void)

{

while (TRUE)

{

waiting = waiting - 1;

signal (barber);

cut-hair();

}

}

Void customer (void)

{

if (waiting < chairs)

{

waiting = waiting + 1;

signal (customers);

get-hair cut();

}

else

{

wait (mutex);

}

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 73

Critical Regions

Critical regions are high-level synchronization constructs. Although semaphores provide a convenient

and effective mechanism for process synchronization, theirincorrect use can still result in timing errors

that are difficult to detect, since theseerrors happen only if some particular execution sequences take

place, and thesesequences do not always occur.

The critical-region construct guards against certain simple errors associated with thesemaphore solution to

the critical-section problem made by a programmer. Critical- regions does not necessarily eliminate all

synchronization errors; rather, it reduces them.

All processes share a semaphore variable mutex, which is initialized to 1. Each process must execute wait

(mutex) before entering into the critical section, and signal (mutex) afterward. If this sequence is not

observed, two processes may be intheir critical sections simultaneously.

Difficulties

• Suppose that a process interchanges the order wait and signal then several processes may be executing in

their critical section simultaneously, violating the mutual exclusion requirement. This error may be discovered

only if several processes are simultaneously active in their critical sections. The code is as follows:Signal

(mutex);

...

critical section

...

wait (mutex);

• Suppose a process replaces signal (mutex) with wait (mutex) i.e.,wait (mutex);

...

critical section

...

wait (mutex);

Here a deadlock will occur.

• If a process omits the wait (mutex) or the signal (mutex), or both. In this case, eithermutual exclusion is

violated or a deadlock will occur.

Solution is use high-level synchronization constructs called critical region and monitor. In these two constructs,

assume a process consists of some local data, anda sequential program that can operate on the data. The local

data can be accessed by only the sequential program that is encapsulated within the same process.

Processes can however share global data.

}

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 74

Monitors

A monitor is an another high-level synchronization construct. It is an abstraction over semaphores. Coding

monitor is similar to programming in high-level programming languages. Monitors are easy to program. The

compiler of a programming language usually implements them, thus reducing the scope of programmatic

errors.

A monitor is a group or collection of data items, a set of procedures to operate onthe data items and a set of

special variables known as ‘condition variables’. The condition variables are similar to semaphores. The

operations possible on a condition variable are signal and wait just like a semaphore. The main difference

between a condition variable and a semaphore is the way in which the signal operation is implemented. Syntax

of a monitor is as follows:

Code:

The client process cannot access the data items inside a monitor directly. The monitor guards them closely.
The processes, which utilize the services of the monitor, need not know about the internal details of the
monitors.

At any given time, only one process can be a part of a monitor. For example consider the situation, there is a

monitor monitor name

{ // shared variable declarations

procedure P1 (...)

{

...

}

procedure P2 (...)

{

...

}

Procedure Pn (...)

{

...

}

Initialization code (...)

{

...

}

}

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 75

monitor M having a shared variable V, a procedureR to operate on V and a condition variable C. There are

two processes P1 and P2 that want to execute the procedure P. In such a situation the following events will

take place:

• Process P1 is scheduled by the operating system

• P1 invokes procedure R to manipulate V.

• While P1 is inside the monitor, the time slice gets exhausted and process P2 isscheduled.

• P2 attempt to invoke R, but it gets blocked as P1 is not yet out of the monitor. As aresult, P2 performs

wait operation on C.

• P1 is scheduled again and it exists the monitor and performs signal operation on C.

• Next time P2 is scheduled and it can enter the monitor, invoke the procedure R andmanipulate V.

Monitor concept cannot guarantee that the preceding access sequence will be

observed.

Problems

 A process may access a resource without first gaining access permission to theresource.

 A process might never release a resource when once it has been granted access tothe resource

 A process might attempt to release a resource that it never requested.

 A process may request, the same resource twice without first releasing the resource.

 The same difficulties are encountered with the use of semaphores. The possible solution to the current

problem is to include the resource access operations within the resource allocator monitor.

 To ensure that the processes observe the appropriate sequences, we must inspect

 all the programs. This inspection is possible for a small, static system, it is notreasonable for a large

or dynamic system.

Message Passing

The need for message passing came into the picture because the techniques such as semaphores and monitors

work fine in the case of local scope. In other words, aslong as the processes are local (i.e., on the same CPU),

these techniques will work fine. But, they are not intended to serve the needs of processes, which are not located

on the same machine. For processes which communicate over a network, needs some mechanism to perform the

communication with each other, and yet theyare able to ensure concurrency. For eliminating this problem

message passing is one solution.

By using the message passing technique, one process (i.e., sender) can safely send a message to another process

(i.e., destination). Message passing is similar to remote procedure calls (RPC), the difference is message

passing is an operating system concept, whereas RPC is a data communications concept.

Two primitives in message passing are:

 Send (destination, & message); i.e., send call

 receive (source & message); i.e., receive call

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 76

UNIT -IV

Interprocess Communication Mechanisms: IPC between processes on a single computer system,
IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory
implementation in linux. Corresponding system calls.
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging,

Page Replacement, Page Replacement Algorithms.

 Inter Process Communication

 Processes share memory

o data in shared messages

 Processes exchange messages

o message passing via sockets

 Requires synchronization

o mutex, waiting

Inter Process Communication(IPC) is an OS supported mechanism for interaction among processes

(coordination and communication)

 Message Passing

o

o

o

e.g. sockets, pips, messages, queues

Memory based IPC

shared memory, memory mapped files

Higher level semantics

files, RPC

Synchronization primitives

Message Passing

 Send/Receive messages

 OS creates and maintains a channel

o buffer, FIFO queue

 OS provides interfaces to processes

o a port

o processes send/write messages to this port

o processes receive/read messages from this port

https://applied-programming.github.io/Operating-Systems-Notes/10-Remote-Procedure-Calls/

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 77

 Kernel required to

o establish communication

o perform each IPC operation

o send: system call + data copy

o receive: system call + data copy

Request-response:4xuser/kernelcrossings+4x data copies

Advantages

 simplicity : kernel does channel management and synchronization

Disadvantages

 Overheads

 Forms of Message Passing IPC

 1. Pipes

 Carry byte stream between 2 process

 e.g connect output

another

2. Message queues

 Carry "messages" among processes

from

1

process

to

input

of

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 78

 OS management includes priorities, scheduling of message delivery

 APIs : Sys-V and POSIX

3. Sockets

 send() and recv() : pass message buffers

 socket() : create kernel level socket buffer

 associated necessary kernel processing (TCP-IP,..)

 If different machines, channel between processes and network devices

 If same machine, bypass full protocol stack

Shared Memory IPC

 read and write to shared memory region

 OS establishes shared channel between the processes

1. physical pages mapped into virtual address space

2. VA(P1) and VA(P2) map to same physical address

3. VA(P1) != VA(P2)

4. physical memory doesn't need to be contiguous

 APIs : SysV, POSIX, memory mapped files, Android ashmem

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 79

Ad

Di

o

Ov

m

Copy

Goa

vantages

System calls only for setup data cop es potentially reduced (but not eliminated)

sdvantages

explicit synchronization

communication protocol, shared bu ffer management

programmer's responsibility

erheads for 1. Message Passing : mu st perform multiple copies 2. Shared Memory : mu

appings among processes' address space and shared memory pages

st establish all

vs Map

l for both is to transfer data from one into target address space

Copy (Message Passing) Map (Shared Memory)

 CPU cycles to copy data

to/from port

CPU cycles to map memory into

address space

 CPU to copy data to channel

 If channel setup once, use many times

(good payoff)

 Can perform well for 1 time use

 Large Data: t(Copy) >> t(Map)

o e.g. trade-off exercised in Window "Local" Procedure Calls (LPC)

Shared Memory and Synchronization

Use threads accessing shared state in a single addressing space, but for process Synchronization

method:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 80

m

w

C

1. mechanism supported by processing threading library (pthreads)

2. OS supported IPC for sync

Either method must coordinate

 no of concurrent access to shared segment

 when data is available and ready for consumption

 IPC Synchronization

Message Queues Semaphores

 Implement "mutual

exclusion" via send/receive
OS supported synchronization construct

 binary construct (either allow process or

not)

 Like mutex, if value = 0, stop; if value =

1, decrement(lock) and proceed

Synchronization

Waiting for other processes, so that they can continue working togethermay repeatedly check to continue

o sync using spinlocks

ay wait for a signal to continue

o sync using mutexes and condition vatiabl

iting hurts performance

o PUs waste cycles for checking; cache

Limitation of mutextes and condition variab

 Error prone/correctness/ease of use

o u lock wrong mutex, signal wrong cond

Lack of expressive power

es

effects

les:

ition variable

o h elper variables for access or priority control

Low-le l support: hardware atomic instructio ns

Synch ronization constructs:

1. S pinlocks (basic sync construct)

 S pinlock is like a mutex

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 81

o

RW locks

specify type of access, then lock behaves accordingly

Monitors (highlevel construct)

shared resource

entry resource

possible condition variables

On entry:

o assigned a max value (positive int) => max count

on try(wait)

o if non-zero, decrement and proceed => counting semaphore

if initialized with 1

o semaphore == mutex(binary semaphore)

on exit(post)

o increment

Syncing different types of accesses

Reader/Writer locks

read (don't modify) write (always modify)

shared access exclusive access

 mutual exclusion

 lock and unlock(free)

 but, lock == busy => spinning

2. Semaphores

 common sync construct in OS kernels

 like a traffic light: Stop and Go

 like mutex, but more general

Semaphore == integer value

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 82

o lock, check

On exit:

o unlock, check, signal

More synchronization constructs

 serializers

 path expressions

 barriers

 rendezvous points

 optimistic wait-free sync (RCU) [Read Copy Update]

All need hardware support.

Need for hardware support

 Problem

o concurrent check/update on different CPUs can overlap

Atomic instructions

Critical section with hardware supported synchronization

Hardware specific

 Test-and-set

o returns(tests) original values and sets new-value!= 1 (busy) automatically

o first thread: test-and-set(lock) => 0 : free

o next ones: test-and-set(lock) => 1 busy

 reset lock to 1, but that's okay

o + : Latency

o + : minimal (Atomic)

o + : Delay potentially min

o - : Contention processors go to memory on each spin - To reduce contention, introduce delay -

Static(based on a fixed value) or Dynamic(backoff based, random delay)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 83

read-and-increment

compare-and-swap

Guarantees

atomicity

mutual exclusion

queue all concurrent instructions but one

Shared Memory Multiprocessors

Also called symmetric multiprocessors (SMP)

o

o

Caches

hide memory latency, "memory" further away due to contention

no-write, write-through, write-back

Cache Coherence

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 84

What are system calls in Operating System?

The interface between a process and an operating system is provided by system calls. In general,

system calls are

available as assembly language instructions. They are also included in the manuals used by the

assembly level programmers. System calls are usually made when a process in user mode requires access to

a resource.

Then it requests the kernel to provide the resource via a system call.

A figure representing the execution of the system call is given as follows −

As can be seen from this diagram, the processes execute normally in the user mode until a system call interrupts

this. Then the system call is executed on a priority basis in the kernel mode. After the execution of the system

call, the control returns to the user mode and execution of user processes can be resumed.

In general, system calls are required in the following situations −

 If a file system requires the creation or deletion of files. Reading and writing from files also require a

system call.

 Creation and management of new processes.

 Network connections also require system calls. This includes sending and receiving packets.

 Access to a hardware devices such as a printer, scanner etc. requires a system call.

Types of System Calls

There are mainly five types of system calls. These are explained in detail as follows −

Process Control

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 85

These system calls deal with processes such as process creation, process termination etc.

File Management

These system calls are responsible for file manipulation such as creating a file, reading a file, writing into a
file etc.

Device Management

These system calls are responsible for device manipulation such as reading from device buffers, writing into

device buffers etc.

Information Maintenance

These system calls handle information and its transfer between the operating system and the user program.

Communication

These system calls are useful for interprocess communication. They also deal with creating and deleting a

communication connection.

Some of the examples of all the above types of system calls in Windows and Unix are given as follows −

Types of System
Calls

Windows Linux

Process Control

CreateProcess()

ExitProcess()

WaitForSingleObject()

fork()

exit()

wait()

File Management

CreateFile()

ReadFile()

WriteFile()
CloseHandle()

open()

read()

write()

close()

Device Management
SetConsoleMode()

ReadConsole()

WriteConsole()

ioctl()

read()

write()

Information

Maintenance

GetCurrentProcessID()

SetTimer()

Sleep()

getpid()

alarm()
sleep()

Communication
CreatePipe()

CreateFileMapping()

MapViewOfFile()

pipe()

shmget()

mmap()

There are many different system calls as shown above. Details of some of those system calls are as follows

−

open()

The open() system call is used to provide access to a file in a file system. This system call allocates resources

to the file and provides a handle that the process uses to refer to the file. A file can be opened by multiple

processes at the same time or be restricted to one process. It all depends on the file organisation and file system.

read()

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 86

The read() system call is used to access data from a file that is stored in the file system. The file to read can

be identified by its file descriptor and it should be opened using open() before it can be read. In general, the

read() system calls takes three arguments i.e. the file descriptor, buffer which stores read data and number of

bytes to be read from the file.

write()

The write() system calls writes the data from a user buffer into a device such as a file. This system call is one

of the ways to output data from a program. In general, the write system calls takes three arguments i.e. file

descriptor, pointer to the buffer where data is stored and number of bytes to write from the buffer.

close()

The close() system call is used to terminate access to a file system. Using this system call means that the file

is no longer required by the program and so the buffers are flushed, the file metadata is updated and the file

resources are de-allocated.

Main Memory

4.1 Background

 Obviously memory accesses and memory management are a very important part of modern computer
operation. Every instruction has to be fetched from memory before it can be executed, and most instructions
involve retrieving data from memory or storing data in memory or both.

 The advent of multi-tasking OSs compounds the complexity of memory management, because as

processes are swapped in and out of the CPU, so must their code and data be swapped in and out of memory,

all at high speeds and without interfering with any other processes.

 Shared memory, virtual memory, the classification of memory as read-only versus read-write, and

concepts like copy-on-write forking all further complicate the issue.

4.1.1 Basic Hardware

 It should be noted that from the memory chips point of view, all memory accesses are equivalent.
The memory hardware doesn't know what a particular part of memory is being used for, nor does it care.
This is almost true of the OS as well, although not entirely.

 The CPU can only access its registers and main memory. It cannot, for example, make direct access

to the hard drive, so any data stored there must first be transferred into the main memory chips before the

CPU can work with it. (Device drivers communicate with their hardware via interrupts and "memory"

accesses, sending short instructions for example to transfer data from the hard drive to a specified location

in main memory. The disk controller monitors the bus for such instructions, transfers the data, and then

notifies the CPU that the data is there with another interrupt, but the CPU never gets direct access to the

disk.)

 Memory accesses to registers are very fast, generally one clock tick, and a CPU may be able to

execute more than one machine instruction per clock tick.

 Memory accesses to main memory are comparatively slow, and may take a number of clock ticks to

complete. This would require intolerable waiting by the CPU if it were not for an intermediary fast memory

cache built into most modern CPUs. The basic idea of the cache is to transfer chunks of memory at a time

from the main memory to the cache, and then to access individual memory locations one at a time from the

cache.

 User processes must be restricted so that they only access memory locations that "belong" to that

particular process. This is usually implemented using a base register and a limit register for each process,

as shown in Figures 3.1 and 3.2 below. Every memory access made by a user process is checked against

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 87

these two registers, and if a memory access is attempted outside the valid range, then a fatal error is

generated. The OS obviously has access to all existing memory locations, as this is necessary to swap users'

code and data in and out of memory. It should also be obvious that changing the contents of the base and

limit registers is a privileged activity, allowed only to the OS kernel.

Figure 4.1 - A base and a limit register define a logical addresss space

Figure 3.2 - Hardware address protection with base and limit registers

3.1.2 Address Binding

 User programs typically refer to memory addresses with symbolic names such as "i", "count", and

"averageTemperature". These symbolic names must be mapped or bound to physical memory addresses,

which typically occurs in several stages:

o Compile Time - If it is known at compile time where a program will reside in physical memory, then
absolute code can be generated by the compiler, containing actual physical addresses. However if the load
address changes at some later time, then the program will have to be recompiled. DOS .COM programs use
compile time binding.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 88

o Load Time - If the location at which a program will be loaded is not known at compile time, then the
compiler must generate relocatable code, which references addresses relative to the start of the program. If
that starting address changes, then the program must be reloaded but not recompiled.

o Execution Time - If a program can be moved around in memory during the course of its execution,
then binding must be delayed until execution time. This requires special hardware, and is the method
implemented by most modern OSes.

 Figure 3.3 shows the various stages of the binding processes and the units involved in each stage:

Figure 4.3 - Multistep processing of a user program

4.1.3 Logical Versus Physical Address Space

 The address generated by the CPU is a logical address, whereas the address actually seen by the

memory hardware is a physical address.

 Addresses bound at compile time or load time have identical logical and physical addresses.

 Addresses created at execution time, however, have different logical and physical addresses.
o In this case the logical address is also known as a virtual address, and the two terms are used
interchangeably by our text.

o The set of all logical addresses used by a program composes the logical address space, and the set of
all corresponding physical addresses composes the physical address space.

 The run time mapping of logical to physical addresses is handled by the memory-management unit,

MMU.
o The MMU can take on many forms. One of the simplest is a modification of the base-register scheme
described earlier.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 89

o The base register is now termed a relocation register, whose value is added to every memory request
at the hardware level.

 Note that user programs never see physical addresses. User programs work entirely in logical address

space, and any memory references or manipulations are done using purely logical addresses. Only when the

address gets sent to the physical memory chips is the physical memory address generated.

Figure 3.4 - Dynamic relocation using a relocation register

4.1.4 Dynamic Loading

 Rather than loading an entire program into memory at once, dynamic loading loads up each routine as

it is called. The advantage is that unused routines need never be loaded, reducing total memory usage and

generating faster program startup times. The downside is the added complexity and overhead of checking to

see if a routine is loaded every time it is called and then loading it up if it is not already loaded.

4.1.5 Dynamic Linking and Shared Libraries

 With static linking library modules get fully included in executable modules, wasting both disk space

and main memory usage, because every program that included a certain routine from the library would

have to have their own copy of that routine linked into their executable code.

 With dynamic linking, however, only a stub is linked into the executable module, containing

references to the actual library module linked in at run time.
o This method saves disk space, because the library routines do not need to be fully included in the
executable modules, only the stubs.
o We will also learn that if the code section of the library routines is reentrant, (meaning it does not

modify the code while it runs, making it safe to re-enter it), then main memory can be saved by loading

only one copy of dynamically linked routines into memory and sharing the code amongst all processes

that are concurrently using it. (Each process would have their own copy of the data section of the

routines, but that may be small relative to the code segments.) Obviously the OS must manage shared

routines in memory.

o An added benefit of dynamically linked libraries (DLLs, also known as shared libraries or shared

objects on UNIX systems) involves easy upgrades and updates. When a program uses a routine from a

standard library and the routine changes, then the program must be re-built (re-linked) in order to

incorporate the changes. However if DLLs are used, then as long as the stub doesn't change, the program

can be updated merely by loading new versions of the DLLs onto the system. Version information is

maintained in both the program and the DLLs, so that a program can specify a particular version of the

DLL if necessary.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 90

o In practice, the first time a program calls a DLL routine, the stub will recognize the fact and will
replace itself with the actual routine from the DLL library. Further calls to the same routine will access

the routine directly and not incur the overhead of the stub access. (Following the UML Proxy

Pattern.)

4.2 Swapping

 A process must be loaded into memory in order to execute.

 If there is not enough memory available to keep all running processes in memory at the same time, then

some processes who are not currently using the CPU may have their memory swapped out to a fast local disk

called the backing store.

4.2.1 Standard Swapping

 If compile-time or load-time address binding is used, then processes must be swapped back into the

same memory location from which they were swapped out. If execution time binding is used, then the

processes can be swapped back into any available location.

 Swapping is a very slow process compared to other operations. For example, if a user process

occupied 10 MB and the transfer rate for the backing store were 40 MB per second, then it would take 1/4

second (250 milliseconds) just to do the data transfer. Adding in a latency lag of 8 milliseconds and

ignoring head seek time for the moment, and further recognizing that swapping involves moving old data

out as well as new data in, the overall transfer time required for this swap is 512 milliseconds, or over half

a second. For efficient processor scheduling the CPU time slice should be significantly longer than this lost

transfer time.

 To reduce swapping transfer overhead, it is desired to transfer as little information as possible, which

requires that the system know how much memory a process is using, as opposed to how much it might use.
Programmers can help with this by freeing up dynamic memory that they are no longer using.

 It is important to swap processes out of memory only when they are idle, or more to the point, only

when there are no pending I/O operations. (Otherwise the pending I/O operation could write into the wrong

process's memory space.) The solution is to either swap only totally idle processes, or do I/O operations

only into and out of OS buffers, which are then transferred to or from process's main memory as a second

step.

 Most modern OSes no longer use swapping, because it is too slow and there are faster alternatives

available. (e.g. Paging.) However some UNIX systems will still invoke swapping if the system gets

extremely full, and then discontinue swapping when the load reduces again. Windows 3.1 would use a

modified version of swapping that was somewhat controlled by the user, swapping process's out if

necessary and then only swapping them back in when the user focused on that particular window.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 91

Figure 4.5 - Swapping of two processes using a disk as a backing store

4.3 Contiguous Memory Allocation

 One approach to memory management is to load each process into a contiguous space. The operating

system is allocated space first, usually at either low or high memory locations, and then the remaining

available memory is allocated to processes as needed. (The OS is usually loaded low, because that is where

the interrupt vectors are located, but on older systems part of the OS was loaded high to make more room in

low memory (within the 640K barrier) for user processes.)

4.3.1 Memory Protection

 The system shown in Figure 3.6 below allows protection against user programs accessing areas that

they should not, allows programs to be relocated to different memory starting addresses as needed, and allows

the memory space devoted to the OS to grow or shrink dynamically as needs change.

Figure 3.6 - Hardware support for relocation and limit registers

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 92

4.3.2 Memory Allocation

 One method of allocating contiguous memory is to divide all available memory into equal sized

partitions, and to assign each process to their own partition. This restricts both the number of simultaneous

processes and the maximum size of each process, and is no longer used.

 An alternate approach is to keep a list of unused (free) memory blocks (holes), and to find a hole of

a suitable size whenever a process needs to be loaded into memory. There are many different strategies for

finding the "best" allocation of memory to processes, including the three most commonly discussed:

1. First fit - Search the list of holes until one is found that is big enough to satisfy the request, and assign

a portion of that hole to that process. Whatever fraction of the hole not needed by the request is left on the

free list as a smaller hole. Subsequent requests may start looking either from the beginning of the list or from

the point at which this search ended.

2. Best fit - Allocate the smallest hole that is big enough to satisfy the request. This saves large holes for

other process requests that may need them later, but the resulting unused portions of holes may be too small

to be of any use, and will therefore be wasted. Keeping the free list sorted can speed up the process of finding

the right hole.

3. Worst fit - Allocate the largest hole available, thereby increasing the likelihood that the remaining

portion will be usable for satisfying future requests.

 Simulations show that either first or best fit are better than worst fit in terms of both time and storage

utilization. First and best fits are about equal in terms of storage utilization, but first fit is faster.

4.3.3. Fragmentation

 All the memory allocation strategies suffer from external fragmentation, though first and best fits

experience the problems more so than worst fit. External fragmentation means that the available memory is

broken up into lots of little pieces, none of which is big enough to satisfy the next memory requirement,

although the sum total could.

 The amount of memory lost to fragmentation may vary with algorithm, usage patterns, and some design
decisions such as which end of a hole to allocate and which end to save on the free list.

 Statistical analysis of first fit, for example, shows that for N blocks of allocated memory, another 0.5

N will be lost to fragmentation.

 Internal fragmentation also occurs, with all memory allocation strategies. This is caused by the fact

that memory is allocated in blocks of a fixed size, whereas the actual memory needed will rarely be that exact

size. For a random distribution of memory requests, on the average 1/2 block will be wasted per memory

request, because on the average the last allocated block will be only half full.

o Note that the same effect happens with hard drives, and that modern hardware gives us increasingly
larger drives and memory at the expense of ever larger block sizes, which translates to more memory lost to
internal fragmentation.

o Some systems use variable size blocks to minimize losses due to internal fragmentation.
 If the programs in memory are relocatable, (using execution-time address binding), then the external

fragmentation problem can be reduced via compaction, i.e. moving all processes down to one end of physical

memory. This only involves updating the relocation register for each process, as all internal work is done

using logical addresses.

 Another solution as we will see in upcoming sections is to allow processes to use non-contiguous blocks

of physical memory, with a separate relocation register for each block.

4.4 Segmentation

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 93

4.4.1 Basic Method

 Most users (programmers) do not think of their programs as existing in one continuous linear
address space.

 Rather they tend to think of their memory in multiple segments, each dedicated to a particular use,

such as code, data, the stack, the heap, etc.

 Memory segmentation supports this view by providing addresses with a segment number (mapped to

a segment base address) and an offset from the beginning of that segment.

 For example, a C compiler might generate 5 segments for the user code, library code, global (static)

variables, the stack, and the heap, as shown in Figure 4.7:

Figure 4.7 Programmer's view of a program.

4.4.2 Segmentation Hardware

 A segment table maps segment-offset addresses to physical addresses, and simultaneously checks for

invalid addresses, using a system similar to the page tables and relocation base registers discussed previously.

(Note that at this point in the discussion of segmentation, each segment is kept in contiguous memory and

may be of different sizes, but that segmentation can also be combined with paging as we shall see shortly.)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 94

Figure 4.8 - Segmentation hardware

Figure 4.9 - Example of segmentation

4.5 Paging

 Paging is a memory management scheme that allows processes physical memory to be discontinuous,

and which eliminates problems with fragmentation by allocating memory in equal sized blocks known as
pages.

 Paging eliminates most of the problems of the other methods discussed previously, and is the

predominant memory management technique used today.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 95

4.5.1 Basic Method

 The basic idea behind paging is to divide physical memory into a number of equal sized blocks called

frames, and to divide a programs logical memory space into blocks of the same size called pages.

 Any page (from any process) can be placed into any available frame.

 The page table is used to look up what frame a particular page is stored in at the moment. In the

following example, for instance, page 2 of the program's logical memory is currently stored in frame 3 of

physical memory:

Figure 4.10 - Paging hardware

Figure 4.11 - Paging model of logical and physical memory

 A logical address consists of two parts: A page number in which the address resides, and an offset

from the beginning of that page. (The number of bits in the page number limits how many pages a single

process can address. The number of bits in the offset determines the maximum size of each page, and should

correspond to the system frame size.)

 The page table maps the page number to a frame number, to yield a physical address which also has

two parts: The frame number and the offset within that frame. The number of bits in the frame number

determines how many frames the system can address, and the number of bits in the offset determines the

size of each frame.

 Page numbers, frame numbers, and frame sizes are determined by the architecture, but are typically

powers of two, allowing addresses to be split at a certain number of bits. For example, if the logical address

size is 2^m and the page size is 2^n, then the high-order m-n bits of a logical address designate the page

number and the remaining n bits represent the offset.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 96

 Note also that the number of bits in the page number and the number of bits in the frame number do

not have to be identical. The former determines the address range of the logical address space, and the latter

relates to the physical address space.

 (DOS used to use an addressing scheme with 16 bit frame numbers and 16-bit offsets, on hardware

that only supported 24-bit hardware addresses. The result was a resolution of starting frame addresses finer

than the size of a single frame, and multiple frame-offset combinations that mapped to the same physical

hardware address.)

 Consider the following micro example, in which a process has 16 bytes of logical memory, mapped in

4 byte pages into 32 bytes of physical memory. (Presumably some other processes would be consuming the

remaining 16 bytes of physical memory.)

Figure 4.12 - Paging example for a 32-byte memory with 4-byte pages

 Note that paging is like having a table of relocation registers, one for each page of the logical memory.

 There is no external fragmentation with paging. All blocks of physical memory are used, and there are

no gaps in between and no problems with finding the right sized hole for a particular chunk of memory.

 There is, however, internal fragmentation. Memory is allocated in chunks the size of a page, and on

the average, the last page will only be half full, wasting on the average half a page of memory per process.

(Possibly more, if processes keep their code and data in separate pages.)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 97

 Larger page sizes waste more memory, but are more efficient in terms of overhead. Modern trends

have been to increase page sizes, and some systems even have multiple size pages to try and make the best

of both worlds.

 Page table entries (frame numbers) are typically 32 bit numbers, allowing access to 2^32 physical

page frames. If those frames are 4 KB in size each, that translates to 16 TB of addressable physical memory.

(32 + 12 = 44 bits of physical address space.)

 When a process requests memory (e.g. when its code is loaded in from disk), free frames are allocated

from a free-frame list, and inserted into that process's page table.

 Processes are blocked from accessing anyone else's memory because all of their memory requests are

mapped through their page table. There is no way for them to generate an address that maps into any other

process's memory space.

 The operating system must keep track of each individual process's page table, updating it whenever

the process's pages get moved in and out of memory, and applying the correct page table when processing

system calls for a particular process. This all increases the overhead involved when swapping processes in

and out of the CPU. (The currently active page table must be updated to reflect the process that is currently

running.)

Figure 4.13 - Free frames (a) before allocation and (b) after allocation

4.5.2 Hardware Support

 Page lookups must be done for every memory reference, and whenever a process gets swapped in or

out of the CPU, its page table must be swapped in and out too, along with the instruction registers, etc. It is

therefore appropriate to provide hardware support for this operation, in order to make it as fast as possible

and to make process switches as fast as possible also.

 One option is to use a set of registers for the page table. For example, the DEC PDP-11 uses 16-bit

addressing and 8 KB pages, resulting in only 8 pages per process. (It takes 13 bits to address 8 KB of offset,

leaving only 3 bits to define a page number.)

 An alternate option is to store the page table in main memory, and to use a single register (called the

page-table base register, PTBR) to record where in memory the page table is located.

o Process switching is fast, because only the single register needs to be changed.
o However memory access just got half as fast, because every memory access now requires two memory

accesses - One to fetch the frame number from memory and then another one to access the desired memory
location.
o The solution to this problem is to use a very special high-speed memory device called the translation

look-aside buffer, TLB.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 98

 The benefit of the TLB is that it can search an entire table for a key value in parallel, and if it is

found anywhere in the table, then the corresponding lookup value is returned.

Figure 4.14 - Paging hardware with TLB

The TLB is very expensive, however, and therefore very small. (Not large enough to hold the entire page

table.) It is therefore used as a cache device.

Addresses are first checked against the TLB, and if the info is not there (a TLB miss), then the frame is

looked up from main memory and the TLB is updated.

If the TLB is full, then replacement strategies range from least-recently used, LRU to random.
Some TLBs allow some entries to be wired down, which means that they cannot be removed from the TLB.
Typically these would be kernel frames.

Some TLBs store address-space identifiers, ASIDs, to keep track of which process "owns" a particular

entry in the TLB. This allows entries from multiple processes to be stored simultaneously in the TLB without

granting one process access to some other process's memory location. Without this feature the TLB has to

be flushed clean with every process switch.

The percentage of time that the desired information is found in the TLB is termed the hit ratio.
(Eighth Edition Version:) For example, suppose that it takes 100 nanoseconds to access main memory,

and only 20 nanoseconds to search the TLB. So a TLB hit takes 120 nanoseconds total (20 to find the frame

number and then another 100 to go get the data), and a TLB miss takes 220 (20 to search the TLB, 100 to

go get the frame number, and then another 100 to go get the data.) So with an 80% TLB hit ratio, the

average memory access time would be:

0.80 * 120 + 0.20 * 220 = 140 nanoseconds

for a 40% slowdown to get the frame number. A 98% hit rate would yield 122 nanoseconds average access

time (you should verify this), for a 22% slowdown.

(Ninth Edition Version:) The ninth edition ignores the 20 nanoseconds required to search the TLB,

yielding

0.80 * 100 + 0.20 * 200 = 120 nanoseconds
for a 20% slowdown to get the frame number. A 99% hit rate would yield 101 nanoseconds average access
time (you should verify this), for a 1% slowdown.

4.5.3 Protection

The page table can also help to protect processes from accessing memory that they shouldn't, or their own

memory in ways that they shouldn't.

A bit or bits can be added to the page table to classify a page as read-write, read-only, read-write-execute,

or some combination of these sorts of things. Then each memory reference can be checked to ensure it is

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 99

accessing the memory in the appropriate mode.

Valid / invalid bits can be added to "mask off" entries in the page table that are not in use by the current

process, as shown by example in Figure 3.12 below.

Note that the valid / invalid bits described above cannot block all illegal memory accesses, due to the internal

fragmentation. (Areas of memory in the last page that are not entirely filled by the process, and may contain

data left over by whoever used that frame last.)

Many processes do not use all of the page table available to them, particularly in modern systems with very

large potential page tables. Rather than waste memory by creating a full-size page table for every process,

some systems use a page-table length register, PTLR, to specify the length of the page table.

Figure 4.15 - Valid (v) or invalid (i) bit in page table

4.5.4 Shared Pages

 Paging systems can make it very easy to share blocks of memory, by simply duplicating page numbers
in multiple page frames. This may be done with either code or data.

 If code is reentrant, that means that it does not write to or change the code in any way (it is non self-

modifying), and it is therefore safe to re-enter it. More importantly, it means the code can be shared by

multiple processes, so long as each has their own copy of the data and registers, including the instruction

register.

 In the example given below, three different users are running the editor simultaneously, but the code is

only loaded into memory (in the page frames) one time.

 Some systems also implement shared memory in this fashion.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 100

Figure 4.16 - Sharing of code in a paging environment

4.6 Structure of the Page Table

4.6.1 Hierarchical Paging

 Most modern computer systems support logical address spaces of 2^32 to 2^64.
 With a 2^32 address space and 4K (2^12) page sizes, this leave 2^20 entries in the page table. At 4

bytes per entry, this amounts to a 4 MB page table, which is too large to reasonably keep in contiguous

memory. (And to swap in and out of memory with each process switch.) Note that with 4K pages, this

would take 1024 pages just to hold the page table!

 One option is to use a two-tier paging system, i.e. to page the page table.

 For example, the 20 bits described above could be broken down into two 10-bit page numbers. The first

identifies an entry in the outer page table, which identifies where in memory to find one page of an inner

page table. The second 10 bits finds a specific entry in that inner page table, which in turn identifies a

particular frame in physical memory. (The remaining 12 bits of the 32 bit logical address are the offset

within the 4K frame.)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 101

Figure 4.17 A two-level page-table scheme

Figure 4.18 - Address translation for a two-level 32-bit paging architecture

 VAX Architecture divides 32-bit addresses into 4 equal sized sections, and each page is 512 bytes,

yielding an address form of:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 102

 With a 64-bit logical address space and 4K pages, there are 52 bits worth of page numbers, which is

still too many even for two-level paging. One could increase the paging level, but with 10-bit page tables it

would take 7 levels of indirection, which would be prohibitively slow memory access. So some other

approach must be used.

64-bits Two-tiered leaves 42 bits in outer table

Going to a fourth level still leaves 32 bits in the outer table.

4.6.2 Hashed Page Tables

 One common data structure for accessing data that is sparsely distributed over a broad range of possible

values is with hash tables. Figure 3.16 below illustrates a hashed page table using chain-and- bucket

hashing:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 103

Figure 3.19 - Hashed page table

4.6.3 Inverted Page Tables

 Another approach is to use an inverted page table. Instead of a table listing all of the pages for a

particular process, an inverted page table lists all of the pages currently loaded in memory, for all processes.
(I.e. there is one entry per frame instead of one entry per page.)

 Access to an inverted page table can be slow, as it may be necessary to search the entire table in order

to find the desired page (or to discover that it is not there.) Hashing the table can help speedup the search

process.

 Inverted page tables prohibit the normal method of implementing shared memory, which is to map

multiple logical pages to a common physical frame. (Because each frame is now mapped to one and only

one process.)

Figure 4.20 - Inverted page table

4.7.1.1 IA-32 Segmentation

 The Pentium CPU provides both pure segmentation and segmentation with paging. In the latter case,

the CPU generates a logical address (segment-offset pair), which the segmentation unit converts into a

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 104

logical linear address, which in turn is mapped to a physical frame by the paging unit, as shown in Figure

3.21:

Figure 4.21 - Logical to physical address translation in IA-32

4.7.1.1 IA-32 Segmentation

 The Pentium architecture allows segments to be as large as 4 GB, (24 bits of offset).

 Processes can have as many as 16K segments, divided into two 8K groups:

o 8K private to that particular process, stored in the Local Descriptor Table, LDT.

o 8K shared among all processes, stored in the Global Descriptor Table, GDT.

 Logical addresses are (selector, offset) pairs, where the selector is made up of 16 bits:

o A 13 bit segment number (up to 8K)

o A 1 bit flag for LDT vs. GDT.

o 2 bits for protection codes.

o The descriptor tables contain 8-byte descriptions of each segment, including base and limit registers.
o Logical linear addresses are generated by looking the selector up in the descriptor table and adding
the appropriate base address to the offset, as shown in Figure 3.22:

Figure 4.22 - IA-32 segmentation

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 105

4.7.1.2 IA-32 Paging

 Pentium paging normally uses a two-tier paging scheme, with the first 10 bits being a page number for

an outer page table (a.k.a. page directory), and the next 10 bits being a page number within one of the 1024

inner page tables, leaving the remaining 12 bits as an offset into a 4K page.

 A special bit in the page directory can indicate that this page is a 4MB page, in which case the remaining
22 bits are all used as offset and the inner tier of page tables is not used.

 The CR3 register points to the page directory for the current process, as shown in Figure 8.23 below.

 If the inner page table is currently swapped out to disk, then the page directory will have an "invalid

bit" set, and the remaining 31 bits provide information on where to find the swapped out page table on the

disk.

Figure 4.23 - Paging in the IA-32 architecture.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 106

Figure 4.24 - Page address extensions.

VIRTUAL MEMORY

 In practice, most real processes do not need all their pages, or at least not all at once, for several
reasons:

1. Error handling code is not needed unless that specific error occurs, some of which are quite rare.

2. Arrays are often over-sized for worst-case scenarios, and only a small fraction of the arrays are

actually used in practice.

3. Certain features of certain programs are rarely used, such as the routine to balance the federal budget.

:-)

 The ability to load only the portions of processes that were actually needed (and only when they were

needed) has several benefits:
o Programs could be written for a much larger address space (virtual memory space) than physically
exists on the computer.
o Because each process is only using a fraction of their total address space, there is more memory left
for other programs, improving CPU utilization and system throughput.

o Less I/O is needed for swapping processes in and out of RAM, speeding things up.

Figure below shows the general layout of virtual memory, which can be much larger than physical

memory:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 107

Figure 4.25 - Diagram showing virtual memory that is larger than physical memory

 Figure 4.25 shows virtual address space, which is the programmers logical view of process memory
storage. The actual physical layout is controlled by the process's page table.

 Note that the address space shown in Figure 9.2 is sparse - A great hole in the middle of the address

space is never used, unless the stack and/or the heap grow to fill the hole.

Figure 4.26 - Virtual address space

 Virtual memory also allows the sharing of files and memory by multiple processes, with several benefits:

o System libraries can be shared by mapping them into the virtual address space of more than one process.

o Processes can also share virtual memory by mapping the same block of memory to more than one process.
o Process pages can be shared during a fork() system call, eliminating the need to copy all of the pages of the

original (parent) process.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 108

Figure 4.27 - Shared library using virtual memory

4.2 Demand Paging

 The basic idea behind demand paging is that when a process is swapped in, its pages are not swapped in all

at once. Rather they are swapped in only when the process needs them. (on demand.) This is termed a lazy

swapper, although a pager is a more accurate term.

Figure 4.28 - Transfer of a paged memory to contiguous disk space

4.2.1 Basic Concepts

 The basic idea behind paging is that when a process is swapped in, the pager only loads into memory those

pages that it expects the process to need (right away.)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 109

 Pages that are not loaded into memory are marked as invalid in the page table, using the invalid bit. (The

rest of the page table entry may either be blank or contain information about where to find the swapped-out

page on the hard drive.)

 If the process only ever accesses pages that are loaded in memory (memory resident pages), then the process

runs exactly as if all the pages were loaded in to memory.

Figure 4.29 - Page table when some pages are not in main memory.

 On the other hand, if a page is needed that was not originally loaded up, then a page fault trap is generated,

which must be handled in a series of steps:

1. The memory address requested is first checked, to make sure it was a valid memory request.

2. If the reference was invalid, the process is terminated. Otherwise, the page must be paged in.

3. A free frame is located, possibly from a free-frame list.

4. A disk operation is scheduled to bring in the necessary page from disk. (This will usually block the process

on an I/O wait, allowing some other process to use the CPU in the meantime.)

5. When the I/O operation is complete, the process's page table is updated with the new frame number, and

the invalid bit is changed to indicate that this is now a valid page reference.

6. The instruction that caused the page fault must now be restarted from the beginning, (as soon as this

process gets another turn on the CPU.)

Figure 4.30 - Steps in handling a page fault

 In an extreme case, NO pages are swapped in for a process until they are requested by page faults.

This is known as pure demand paging.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 110

 In theory each instruction could generate multiple page faults. In practice this is very rare, due to

locality of reference, covered in section 9.6.1.
 The hardware necessary to support virtual memory is the same as for paging and swapping: A page
table and secondary memory. (Swap space, whose allocation is discussed in chapter 12.)

 A crucial part of the process is that the instruction must be restarted from scratch once the desired page

has been made available in memory. For most simple instructions this is not a major difficulty. However

there are some architectures that allow a single instruction to modify a fairly large block of data, (which

may span a page boundary), and if some of the data gets modified before the page fault occurs, this could

cause problems. One solution is to access both ends of the block before executing the instruction,

guaranteeing that the necessary pages get paged in before the instruction begins.

4.2.2 Performance of Demand Paging

 Obviously there is some slowdown and performance hit whenever a page fault occurs and the system has to

go get it from memory, but just how big a hit is it exactly?

 There are many steps that occur when servicing a page fault (see book for full details), and some of the

steps are optional or variable. But just for the sake of discussion, suppose that a normal memory access

requires 200 nanoseconds, and that servicing a page fault takes 8 milliseconds. (8,000,000 nanoseconds, or

40,000 times a normal memory access.) With a page fault rate of p, (on a scale from 0 to 1), the effective

access time is now:

(1 - p) * (200) + p * 8000000 = 200 + 7,999,800 * p

which clearly depends heavily on p! Even if only one access in 1000 causes a page fault, the effective

access time drops from 200 nanoseconds to 8.2 microseconds, a slowdown of a factor of 40 times. In order

to keep the slowdown less than 10%, the page fault rate must be less than 0.0000025,

or one in 399,990 accesses.

 A subtlety is that swap space is faster to access than the regular file system, because it does not have to go

through the whole directory structure. For this reason some systems will transfer an entire process from the

file system to swap space before starting up the process, so that future paging all occurs from the

(relatively) faster swap space.

 Some systems use demand paging directly from the file system for binary code (which never changes and

hence does not have to be stored on a page operation), and to reserve the swap space for data segments that

must be stored. This approach is used by both Solaris and BSD Unix.

4.3 Page Replacement

 In order to make the most use of virtual memory, we load several processes into memory at the same time.

Since we only load the pages that are actually needed by each process at any given time, there is room to
load many more processes than if we had to load in the entire process.

 However memory is also needed for other purposes (such as I/O buffering), and what happens if some

process suddenly decides it needs more pages and there aren't any free frames available? There are several

possible solutions to consider:

1. Adjust the memory used by I/O buffering, etc., to free up some frames for user processes. The decision of

how to allocate memory for I/O versus user processes is a complex one, yielding different policies on

different systems. (Some allocate a fixed amount for I/O, and others let the I/O system contend for memory

along with everything else.)

2. Put the process requesting more pages into a wait queue until some free frames become available.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 111

3. Swap some process out of memory completely, freeing up its page frames.

4. Find some page in memory that isn't being used right now, and swap that page only out to disk, freeing up a

frame that can be allocated to the process requesting it. This is known as page replacement, and is the most

common solution. There are many different algorithms for page replacement, which is the subject of the

remainder of this section.

Figure 4.31 - Need for page replacement.

4.3.1 Basic Page Replacement

 The previously discussed page-fault processing assumed that there would be free frames available on the

free-frame list. Now the page-fault handling must be modified to free up a frame if necessary, as follows:

1. Find the location of the desired page on the disk, either in swap space or in the file system.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select an existing frame to be replaced,

known as the victim frame.

c. Write the victim frame to disk. Change all related page tables to indicate that this page is no longer in

memory.

3. Read in the desired page and store it in the frame. Adjust all related page and frame tables to indicate the

change.

4. Restart the process that was waiting for this page.

Figure 4.32 - Page replacement.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 112

 Note that step 3c adds an extra disk write to the page-fault handling, effectively doubling the time

required to process a page fault. This can be alleviated somewhat by assigning a modify bit, or dirty bit to

each page, indicating whether or not it has been changed since it was last loaded in from disk. If the dirty bit

has not been set, then the page is unchanged, and does not need to be written out to disk. Otherwise the page

write is required. It should come as no surprise that many page replacement strategies specifically look for

pages that do not have their dirty bit set, and preferentially select clean pages as victim pages. It should also

be obvious that unmodifiable code pages never get their dirty bits set.

 There are two major requirements to implement a successful demand paging system. We must develop

a frame-allocation algorithm and a page-replacement algorithm. The former centers around how many

frames are allocated to each process (and to other needs), and the latter deals with how to select a page for

replacement when there are no free frames available.

 The overall goal in selecting and tuning these algorithms is to generate the fewest number of overall

page faults. Because disk access is so slow relative to memory access, even slight improvements to these

algorithms can yield large improvements in overall system performance.

 Algorithms are evaluated using a given string of memory accesses known as a reference string,

which can be generated in one of (at least) three common ways:
1. Randomly generated, either evenly distributed or with some distribution curve based on observed

system behavior. This is the fastest and easiest approach, but may not reflect real performance well, as it

ignores locality of reference.

2. Specifically designed sequences. These are useful for illustrating the properties of comparative

algorithms in published papers and textbooks, (and also for homework and exam problems. :-))

3. Recorded memory references from a live system. This may be the best approach, but the amount of

data collected can be enormous, on the order of a million addresses per second. The volume of collected data

can be reduced by making two important observations:

1. Only the page number that was accessed is relevant. The offset within that page does not affect

paging operations.

2. Successive accesses within the same page can be treated as a single page request, because all

requests after the first are guaranteed to be page hits. (Since there are no intervening requests for other pages

that could remove this page from the page table.)

 So for example, if pages were of size 100 bytes, then the sequence of address requests (0100,

0432, 0101, 0612, 0634, 0688, 0132, 0038, 0420) would reduce to page requests (1, 4, 1, 6, 1, 0, 4)

As the number of available frames increases, the number of page faults should decrease, as shown in Figure

3.33:

Figure 4.33 - Graph of page faults versus number of frames.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 113

4.3.2 FIFO Page Replacement

 A simple and obvious page replacement strategy is FIFO, i.e. first-in-first-out.
 As new pages are brought in, they are added to the tail of a queue, and the page at the head of the queue is

the next victim. In the following example, 20 page requests result in 15 page faults:

Figure 4 .34 - FIFO page-replacement algorithm.

 Although FIFO is simple and easy, it is not always optimal, or even efficient.
 An interesting effect that can occur with FIFO is Belady's anomaly, in which increasing the number of frames

available can actually increase the number of page faults that occur! Consider, for example, the following

chart based on the page sequence (1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5) and a varying number of available frames.

Obviously the maximum number of faults is 12 (every request generates a fault), and the minimum number

is 5 (each page loaded only once), but in between there are some interesting results:

Figure 4.35 - Page-fault curve for FIFO replacement on a reference string.

4.3.3 Optimal Page Replacement

 The discovery of Belady's anomaly lead to the search for an optimal page-replacement algorithm, which is

simply that which yields the lowest of all possible page-faults, and which does not suffer from Belady's

anomaly.

 Such an algorithm does exist, and is called OPT orMIN. This algorithm is simply "Replace the page that

will not be used for the longest time in the future."

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 114

 For example, Figure 9.14 shows that by applying OPT to the same reference string used for the FIFO

example, the minimum number of possible page faults is 9. Since 6 of the page-faults are unavoidable (the

first reference to each new page), FIFO can be shown to require 3 times as many (extra) page faults as the

optimal algorithm. (Note: The book claims that only the first three page faults are required by all algorithms,

indicating that FIFO is only twice as bad as OPT.)

 Unfortunately OPT cannot be implemented in practice, because it requires foretelling the future, but it makes

a nice benchmark for the comparison and evaluation of real proposed new algorithms.

 In practice most page-replacement algorithms try to approximate OPT by predicting (estimating) in one

fashion or another what page will not be used for the longest period of time. The basis of FIFO is the

prediction that the page that was brought in the longest time ago is the one that will not be needed again for

the longest future time, but as we shall see, there are many other prediction methods, all striving to match

the performance of OPT.

Figure 4.36 - Optimal page-replacement algorithm

4.4 LRU Page Replacement

 The prediction behind LRU, the Least Recently Used, algorithm is that the page that has not been used in the

longest time is the one that will not be used again in the near future. (Note the distinction between FIFO and

LRU: The former looks at the oldest load time, and the latter looks at the oldest use time.)

 Some view LRU as analogous to OPT, except looking backwards in time instead of forwards. (OPT has the

interesting property that for any reference string S and its reverse R, OPT will generate the same number of

page faults for S and for R. It turns out that LRU has this same property.)

 Figure 9.15 illustrates LRU for our sample string, yielding 12 page faults, (as compared to 15 for FIFO and

9 for OPT.)

Figure 4.37 - LRU page-replacement algorithm.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 115

 LRU is considered a good replacement policy, and is often used. The problem is how exactly to implement
it. There are two simple approaches commonly used:

1. Counters. Every memory access increments a counter, and the current value of this counter is stored in the

page table entry for that page. Then finding the LRU page involves simple searching the table for the page

with the smallest counter value. Note that overflowing of the counter must be considered.

2. Stack. Another approach is to use a stack, and whenever a page is accessed, pull that page from the middle

of the stack and place it on the top. The LRU page will always be at the bottom of the stack. Because this

requires removing objects from the middle of the stack, a doubly linked list is the recommended data

structure.

 Note that both implementations of LRU require hardware support, either for incrementing the counter or for

managing the stack, as these operations must be performed for every memory access.

 Neither LRU or OPT exhibit Belady's anomaly. Both belong to a class of page-replacement algorithms called

stack algorithms, which can never exhibit Belady's anomaly. A stack algorithm is one in which the pages

kept in memory for a frame set of size N will always be a subset of the pages kept for a frame size of N + 1.

In the case of LRU, (and particularly the stack implementation thereof), the top N pages of the stack will

be the same for all frame set sizes of N or anything larger.

Figure 4.38 - Use of a stack to record the most recent page references.

4.5 LRU-Approximation Page Replacement

 Unfortunately full implementation of LRU requires hardware support, and few systems provide the full

hardware support necessary.

 However many systems offer some degree of HW support, enough to approximate LRU fairly well. (In the

absence of ANY hardware support, FIFO might be the best available choice.)

 In particular, many systems provide a reference bit for every entry in a page table, which is set anytime that

page is accessed. Initially all bits are set to zero, and they can also all be cleared at any time. One bit of

precision is enough to distinguish pages that have been accessed since the last clear from those that have not,

but does not provide any finer grain of detail.

4.5.1 Additional-Reference-Bits Algorithm

 Finer grain is possible by storing the most recent 8 reference bits for each page in an 8-bit byte in the page

table entry, which is interpreted as an unsigned int.

o At periodic intervals (clock interrupts), the OS takes over, and right-shifts each of the reference bytes by
one bit.

o The high-order (leftmost) bit is then filled in with the current value of the reference bit, and the reference
bits are cleared.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 116

o At any given time, the page with the smallest value for the reference byte is the LRU page.
 Obviously the specific number of bits used and the frequency with which the reference byte is updated are

adjustable, and are tuned to give the fastest performance on a given hardware platform.

4.5.2 Second-Chance Algorithm

 The second chance algorithm is essentially a FIFO, except the reference bit is used to give pages a second
chance at staying in the page table.

o When a page must be replaced, the page table is scanned in a FIFO (circular queue) manner.

o If a page is found with its reference bit not set, then that page is selected as the next victim.

o If, however, the next page in the FIFO does have its reference bit set, then it is given a second chance:
 The reference bit is cleared, and the FIFO search continues.

 If some other page is found that did not have its reference bit set, then that page will be selected as the

victim, and this page (the one being given the second chance) will be allowed to stay in the page table.

 If , however, there are no other pages that do not have their reference bit set, then this page will be selected

as the victim when the FIFO search circles back around to this page on the second pass.

 If all reference bits in the table are set, then second chance degrades to FIFO, but also requires a complete

search of the table for every page-replacement.

 As long as there are some pages whose reference bits are not set, then any page referenced frequently

enough gets to stay in the page table indefinitely.

 This algorithm is also known as the clock algorithm, from the hands of the clock moving around the

circular queue.

Figure 4.39 - Second-chance (clock) page-replacement algorithm.

4.5.3 Enhanced Second-Chance Algorithm

 The enhanced second chance algorithm looks at the reference bit and the modify bit (dirty bit) as an

ordered page, and classifies pages into one of four classes:

1.(0, 0) - Neither recently used nor modified.

2.(0, 1) - Not recently used, but modified.

3.(1, 0) - Recently used, but clean.

4.(1, 1) - Recently used and modified.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 117

 This algorithm searches the page table in a circular fashion (in as many as four passes), looking for the first

page it can find in the lowest numbered category. I.e. it first makes a pass looking for a (0, 0), and then if it

can't find one, it makes another pass looking for a (0, 1), etc.

 The main difference between this algorithm and the previous one is the preference for replacing clean pages

if possible.

4.6 Counting-Based Page Replacement

 There are several algorithms based on counting the number of references that have been made to a given

page, such as:
o Least Frequently Used, LFU: Replace the page with the lowest reference count. A problem can occur if a

page is used frequently initially and then not used any more, as the reference count remains high. A solution

to this problem is to right-shift the counters periodically, yielding a time-decaying average reference count.
o Most Frequently Used, MFU: Replace the page with the highest reference count. The logic behind this idea

is that pages that have already been referenced a lot have been in the system a long time, and we are probably
done with them, whereas pages referenced only a few times have only recently been loaded, and we still need

them.

 In general counting-based algorithms are not commonly used, as their implementation is expensive and they

do not approximate OPT well.

4.7 Page-Buffering Algorithms

There are a number of page-buffering algorithms that can be used in conjunction with the afore-

mentioned algorithms, to improve overall performance and sometimes make up for inherent weaknesses in

the hardware and/or the underlying page-replacement algorithms:

 Maintain a certain minimum number of free frames at all times. When a page-fault occurs, go ahead and

allocate one of the free frames from the free list first, to get the requesting process up and running again as

quickly as possible, and then select a victim page to write to disk and free up a frame as a second step.

 Keep a list of modified pages, and when the I/O system is otherwise idle, have it write these pages out to

disk, and then clear the modify bits, thereby increasing the chance of finding a "clean" page for the next

potential victim.

 Keep a pool of free frames, but remember what page was in it before it was made free. Since the data in the

page is not actually cleared out when the page is freed, it can be made an active page again without having

to load in any new data from disk. This is useful when an algorithm mistakenly replaces a page that in fact

is needed again soon.

4.8 Applications and Page Replacement

 Some applications (most notably database programs) understand their data accessing and caching needs

better than the general-purpose OS, and should therefore be given reign to do their own memory management.

 Sometimes such programs are given a raw disk partition to work with, containing raw data blocks and no

file system structure. It is then up to the application to use this disk partition as extended memory or for

whatever other reasons it sees fit.

4.4 Allocation of Frames

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 118

We said earlier that there were two important tasks in virtual memory management: a page-replacement

strategy and a frame-allocation strategy. This section covers the second part of that pair.

4.4.1 Minimum Number of Frames

 The absolute minimum number of frames that a process must be allocated is dependent on system

architecture, and corresponds to the worst-case scenario of the number of pages that could be touched by a

single (machine) instruction.

 If an instruction (and its operands) spans a page boundary, then multiple pages could be needed just for the

instruction fetch.

 Memory references in an instruction touch more pages, and if those memory locations can span page

boundaries, then multiple pages could be needed for operand access also.

 The worst case involves indirect addressing, particularly where multiple levels of indirect addressing are

allowed. Left unchecked, a pointer to a pointer to a pointer to a pointer to a . . . could theoretically touch

every page in the virtual address space in a single machine instruction, requiring every virtual page be loaded

into physical memory simultaneously. For this reason architectures place a limit (say 16) on the number of

levels of indirection allowed in an instruction, which is enforced with a counter initialized to the limit and

decremented with every level of indirection in an instruction - If the counter reaches zero, then an "excessive

indirection" trap occurs. This example would still require a minimum frame allocation of 17 per process.

4.4.2 Allocation Algorithms

 Equal Allocation - If there are m frames available and n processes to share them, each process gets m / n

frames, and the leftovers are kept in a free-frame buffer pool.

 Proportional Allocation - Allocate the frames proportionally to the size of the process, relative to the total

size of all processes. So if the size of process i is S_i, and S is the sum of all S_i, then the allocation for

process P_i is a_i = m * S_i / S.

 Variations on proportional allocation could consider priority of process rather than just their size.

 Obviously all allocations fluctuate over time as the number of available free frames, m, fluctuates, and all

are also subject to the constraints of minimum allocation. (If the minimum allocations cannot be met, then

processes must either be swapped out or not allowed to start until more free frames become available.)

4.4.3 Global versus Local Allocation

 One big question is whether frame allocation (page replacement) occurs on a local or global level.
 With local replacement, the number of pages allocated to a process is fixed, and page replacement occurs

only amongst the pages allocated to this process.

 With global replacement, any page may be a potential victim, whether it currently belongs to the process

seeking a free frame or not.

 Local page replacement allows processes to better control their own page fault rates, and leads to more

consistent performance of a given process over different system load levels.

 Global page replacement is overall more efficient, and is the more commonly used approach.

4.4.4 Non-Uniform Memory Access

 The above arguments all assume that all memory is equivalent, or at least has equivalent access times.
 This may not be the case in multiple-processor systems, especially where each CPU is physically located

on a separate circuit board which also holds some portion of the overall system memory.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 119

 In these latter systems, CPUs can access memory that is physically located on the same board much faster
than the memory on the other boards.

 The basic solution is akin to processor affinity - At the same time that we try to schedule processes on the

same CPU to minimize cache misses, we also try to allocate memory for those processes on the same boards,

to minimize access times.

 The presence of threads complicates the picture, especially when the threads get loaded onto different

processors.

 Solaris uses an lgroup as a solution, in a hierarchical fashion based on relative latency. For example, all

processors and RAM on a single board would probably be in the same lgroup. Memory assignments are made

within the same lgroup if possible, or to the next nearest lgroup otherwise. (Where "nearest" is defined as

having the lowest access time.)

4.5 Thrashing

 If a process cannot maintain its minimum required number of frames, then it must be swapped out, freeing

up frames for other processes. This is an intermediate level of CPU scheduling.

 But what about a process that can keep its minimum, but cannot keep all of the frames that it is currently

using on a regular basis? In this case it is forced to page out pages that it will need again in the very near

future, leading to large numbers of page faults.

 A process that is spending more time paging than executing is said to be thrashing.

4.5.1 Cause of Thrashing

 Early process scheduling schemes would control the level of multiprogramming allowed based on CPU

utilization, adding in more processes when CPU utilization was low.

 The problem is that when memory filled up and processes started spending lots of time waiting for their

pages to page in, then CPU utilization would lower, causing the schedule to add in even more processes and

exacerbating the problem! Eventually the system would essentially grind to a halt.

 Local page replacement policies can prevent one thrashing process from taking pages away from other

processes, but it still tends to clog up the I/O queue, thereby slowing down any other process that needs to

do even a little bit of paging (or any other I/O for that matter.)

Figure 4.40 - Thrashing

 To prevent thrashing we must provide processes with as many frames as they really need "right now", but

how do we know what that is?

4.5.2 Working-Set Model

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 120

 The working set model is based on the concept of locality, and defines a working set window, of length delta.

Whatever pages are included in the most recent delta page references are said to be in the processes working

set window, and comprise its current working set, as illustrated in Figure 9.20:

Figure 4.41 - Working-set model.

 The selection of delta is critical to the success of the working set model - If it is too small then it does not

encompass all of the pages of the current locality, and if it is too large, then it encompasses pages that are no

longer being frequently accessed.

 The total demand, D, is the sum of the sizes of the working sets for all processes. If D exceeds the total

number of available frames, then at least one process is thrashing, because there are not enough frames

available to satisfy its minimum working set. If D is significantly less than the currently available frames,

then additional processes can be launched.

 The hard part of the working-set model is keeping track of what pages are in the current working set, since

every reference adds one to the set and removes one older page. An approximation can be made using

reference bits and a timer that goes off after a set interval of memory references:

o For example, suppose that we set the timer to go off after every 5000 references (by any process), and we
can store two additional historical reference bits in addition to the current reference bit.

o Every time the timer goes off, the current reference bit is copied to one of the two historical bits, and then
cleared.

o If any of the three bits is set, then that page was referenced within the last 15,000 references, and is
considered to be in that processes reference set.

o Finer resolution can be achieved with more historical bits and a more frequent timer, at the expense of
greater overhead.

4.5.3 Page-Fault Frequency

 A more direct approach is to recognize that what we really want to control is the page-fault rate, and to

allocate frames based on this directly measurable value. If the page-fault rate exceeds a certain upper bound

then that process needs more frames, and if it is below a given lower bound, then it can afford to give up

some of its frames to other processes.

 (I suppose a page-replacement strategy could be devised that would select victim frames based on the process

with the lowest current page-fault frequency.)

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 121

Figure 4.42 - Page-fault frequency.

 Note that there is a direct relationship between the page-fault rate and the working-set, as a process moves

from one locality to another:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 122

UNIT- V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System
Structure, Allocation methods, kernel support for files, system calls for file I/O operations open, create, read,

write, close, lseek, stat, ioctl

Disk Management: Disk Scheduling Algorithms-FCFS, SSTF, SCAN, C-SCAN

FILE-SYSTEM INTERFACE

File Attributes

 Different OSes keep track of different file attributes, including:
o Name - Some systems give special significance to names, and particularly extensions (.exe, .txt, etc.), and
some do not. Some extensions may be of significance to the OS (.exe), and others only to certain applications
(.jpg)

o Identifier (e.g. inode number)

o Type - Text, executable, other binary, etc.

o Location - on the hard drive.

o

o Size

o Protection

o Time & Date

o User ID

File Operations

 The file ADT supports many common operations:

o Creating a file

o Writing a file

o Reading a file

o Repositioning within a file

o Deleting a file

o Truncating a file.
 Most OSes require that files be opened before access and closed after all access is complete. Normally

the programmer must open and close files explicitly, but some rare systems open the file automatically at

first access. Information about currently open files is stored in an open file table, containing for example:

o File pointer - records the current position in the file, for the next read or write access.
o File-open count - How many times has the current file been opened (simultaneously by different
processes) and not yet closed? When this counter reaches zero the file can be removed from the table.

o Disk location of the file.

o Access rights

 Some systems provide support for file locking.

o A shared lock is for reading only.

o A exclusive lock is for writing as well as reading.

o An advisory lock is informational only, and not enforced. (A "Keep Out" sign, which may be ignored.)

o A mandatory lock is enforced. (A truly locked door.)

o UNIX used advisory locks, and Windows uses mandatory locks.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 123

File Types

 Windows (and some other systems) use special file extensions to indicate the type of each file:

Common file types.

 Macintosh stores a creator attribute for each file, according to the program that first created it with the create(

) system call.

UNIX stores magic numbers at the beginning of certain files. (Experiment with the "file" command,

especially in directories such as /bin and /dev)

File Structure

 Some files contain an internal structure, which may or may not be known to the OS.

 For the OS to support particular file formats increases the size and complexity of the OS.
UNIX treats all files as sequences of bytes, with no further consideration of the internal structure. (With the

exception of executable binary programs, which it must know how to load and find the first executable

statement, etc.)

Macintosh files have two forks - a resource fork, and a data fork. The resource fork contains information

relating to the UI, such as icons and button images, and can be modified independently of the data fork,

which contains the code or data as appropriate.

Internal File Structure

 Disk files are accessed in units of physical blocks, typically 512 bytes or some power-of-two multiple

thereof. (Larger physical disks use larger block sizes, to keep the range of block numbers within the range

of a 32-bit integer.)

 Internally files are organized in units of logical units, which may be as small as a single byte, or may
be a larger size corresponding to some data record or structure size.

 The number of logical units which fit into one physical block determines its packing, and has an impact

on the amount of internal fragmentation (wasted space) that occurs.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 124

 As a general rule, half a physical block is wasted for each file, and the larger the block sizes the more

space is lost to internal fragmentation.

Access Methods

Sequential Access

 A sequential access file emulates magnetic tape operation, and generally supports a few operations:

o read next - read a record and advance the tape to the next position.

o write next - write a record and advance the tape to the next position.
o rewind
o skip n records - May or may not be supported. N may be limited to positive numbers, or may be
limited to +/- 1.

Sequential-access file.

Direct Access

 Jump to any record and read that record. Operations supported include:

o read n - read record number n. (Note an argument is now required.)

o write n - write record number n. (Note an argument is now required.)

o jump to record n - could be 0 or the end of file.

o Query current record - used to return back to this record later.

o Sequential access can be easily emulated using direct access. The inverse is complicated and inefficient.

Simulation of sequential access on a direct-access file.

Other Access Methods

 An indexed access scheme can be easily built on top of a direct access system. Very large files may require

a multi-tiered indexing scheme, i.e. indexes of indexes.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 125

Example of index and relative files.

Directory Structure

Storage Structure

 A disk can be used in its entirety for a file system.
 Alternatively a physical disk can be broken up into multiple partitions, slices, or mini-disks, each of which

becomes a virtual disk and can have its own filesystem. (or be used for raw storage, swap space, etc.)

 Or, multiple physical disks can be combined into one volume, i.e. a larger virtual disk, with its own

filesystem spanning the physical disks.

A typical file-system organization.

Directory Overview

 Directory operations to be supported include:

o Search for a file

o Create a file - add to the directory

o Delete a file - erase from the directory

o List a directory - possibly ordered in different ways.

o Rename a file - may change sorting order

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 126

o Traverse the file system.

Single-Level Directory

 Simple to implement, but each file must have a unique name.

Single-level directory.

Two-Level Directory

 Each user gets their own directory space.

 File names only need to be unique within a given user's directory.

 A master file directory is used to keep track of each users directory, and must be maintained when users are

added to or removed from the system.

 A separate directory is generally needed for system (executable) files.

 Systems may or may not allow users to access other directories besides their own

o If access to other directories is allowed, then provision must be made to specify the directory being accessed.
o If access is denied, then special consideration must be made for users to run programs located in system

directories. A search path is the list of directories in which to search for executable programs, and can be set
uniquely for each user.

Two-level directory structure.

Tree-Structured Directories

 An obvious extension to the two-tiered directory structure, and the one with which we are all most

familiar.

 Each user / process has the concept of a current directory from which all (relative) searches take place.
 Files may be accessed using either absolute pathnames (relative to the root of the tree) or relative

pathnames (relative to the current directory.)

 Directories are stored the same as any other file in the system, except there is a bit that identifies them as

directories, and they have some special structure that the OS understands.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 127

 One question for consideration is whether or not to allow the removal of directories that are not empty -

Windows requires that directories be emptied first, and UNIX provides an option for deleting entire sub-

trees.

Tree-structured directory structure.

Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the directory structure (e.g. because
they are being shared by more than one user / process), it can be useful to provide an acyclic- graph structure.

(Note the directed arcs from parent to child.)

 UNIX provides two types of links for implementing the acyclic-graph structure. (See "man ln" for
more details.)

o A hard link (usually just called a link) involves multiple directory entries that both refer to the same
file. Hard links are only valid for ordinary files in the same filesystem.

o A symbolic link, that involves a special file, containing information about where to find the linked file.
Symbolic links may be used to link directories and/or files in other filesystems, as well as ordinary files in
the current filesystem.

 Windows only supports symbolic links, termed shortcuts.

 Hard links require a reference count, or link count for each file, keeping track of how many directory

entries are currently referring to this file. Whenever one of the references is removed the link count is reduced,

and when it reaches zero, the disk space can be reclaimed.

 For symbolic links there is some question as to what to do with the symbolic links when the original

file is moved or deleted:

o One option is to find all the symbolic links and adjust them also.
o Another is to leave the symbolic links dangling, and discover that they are no longer valid the next time
they are used.

o What if the original file is removed, and replaced with another file having the same name before the
symbolic link is next used?

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 128

Acyclic-graph directory structure.

General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise:
o Search algorithms can go into infinite loops. One solution is to not follow links in search algorithms. (
Or not to follow symbolic links, and to only allow symbolic links to refer to directories.)

o Sub-trees can become disconnected from the rest of the tree and still not have their reference counts

reduced to zero. Periodic garbage collection is required to detect and resolve this problem. (chkdsk in DOS

and fsck in UNIX search for these problems, among others, even though cycles are not supposed to be

allowed in either system. Disconnected disk blocks that are not marked as free are added back to the file

systems with made-up file names, and can usually be safely deleted.)

General graph directory.

File-System Mounting

 The basic idea behind mounting file systems is to combine multiple file systems into one large tree structure.

 The mount command is given a filesystem to mount and a mount point (directory) on which to attach it.

 Once a file system is mounted onto a mount point, any further references to that directory actually refer to

the root of the mounted file system.

 Any files (or sub-directories) that had been stored in the mount point directory prior to mounting the new

filesystem are now hidden by the mounted filesystem, and are no longer available. For this reason some

systems only allow mounting onto empty directories.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 129

 Filesystems can only be mounted by root, unless root has previously configured certain filesystems to be

mountable onto certain pre-determined mount points. (E.g. root may allow users to mount floppy filesystems

to /mnt or something like it.) Anyone can run the mount command to see what filesystems are currently

mounted.

 Filesystems may be mounted read-only, or have other restrictions imposed.

File system. (a) Existing system. (b) Unmounted volume.

Mount point.

 The traditional Windows OS runs an extended two-tier directory structure, where the first tier of the

structure separates volumes by drive letters, and a tree structure is implemented below that level.

 Macintosh runs a similar system, where each new volume that is found is automatically mounted and added

to the desktop when it is found.

 More recent Windows systems allow filesystems to be mounted to any directory in the filesystem, much

like UNIX.

File Sharing

Multiple Users

 On a multi-user system, more information needs to be stored for each file:

o The owner (user) who owns the file, and who can control its access.
o The group of other user IDs that may have some special access to the file.
o What access rights are afforded to the owner (User), the Group, and to the rest of the world (the universe,

a.k.a. Others.)

o Some systems have more complicated access control, allowing or denying specific accesses to specifically
named users or groups.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 130

Remote File Systems

 The advent of the Internet introduces issues for accessing files stored on remote computers
o The original method was ftp, allowing individual files to be transported across systems as needed. Ftp can

be either account and password controlled, or anonymous, not requiring any user name or password.
o Various forms of distributed file systems allow remote file systems to be mounted onto a local directory

structure, and accessed using normal file access commands. (The actual files are still transported across the
network as needed, possibly using ftp as the underlying transport mechanism.)

o The WWW has made it easy once again to access files on remote systems without mounting their filesystems,
generally using (anonymous) ftp as the underlying file transport mechanism.

The Client-Server Model

 When one computer system remotely mounts a filesystem that is physically located on another system, the

system which physically owns the files acts as a server, and the system which mounts them is the client.

 User IDs and group IDs must be consistent across both systems for the system to work properly. (I.e. this is

most applicable across multiple computers managed by the same organization, shared by a common group

of users.)

 The same computer can be both a client and a server. (E.g. cross-linked file systems.)

 There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain trusted systems only. Spoofing (a computer
pretending to be a different computer) is a potential security risk.

o Servers may restrict remote access to read-only.
o Servers restrict which filesystems may be remotely mounted. Generally the information within those

subsystems is limited, relatively public, and protected by frequent backups.

 The NFS (Network File System) is a classic example of such a system.

Distributed Information Systems

 The Domain Name System, DNS, provides for a unique naming system across all of the Internet.

 Domain names are maintained by the Network Information System, NIS, which unfortunately has several
security issues. NIS+ is a more secure version, but has not yet gained the same widespread acceptance as

NIS.

 Microsoft's Common Internet File System, CIFS, establishes a network login for each user on a networked

system with shared file access. Older Windows systems used domains, and newer systems (XP, 2000), use

active directories. User names must match across the network for this system to be valid.

 A newer approach is the Lightweight Directory-Access Protocol, LDAP, which provides a secure single

sign-on for all users to access all resources on a network. This is a secure system which is gaining in

popularity, and which has the maintenance advantage of combining authorization information in one central

location.

Failure Modes

 When a local disk file is unavailable, the result is generally known immediately, and is generally non-

recoverable. The only reasonable response is for the response to fail.

 However when a remote file is unavailable, there are many possible reasons, and whether or not it is

unrecoverable is not readily apparent. Hence most remote access systems allow for blocking or delayed

response, in the hopes that the remote system (or the network) will come back up eventually.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 131

Consistency Semantics

 Consistency Semantics deals with the consistency between the views of shared files on a networked system.

When one user changes the file, when do other users see the changes?

UNIX Semantics

 The UNIX file system uses the following semantics:

o Writes to an open file are immediately visible to any other user who has the file open.

o One implementation uses a shared location pointer, which is adjusted for all sharing users.
 The file is associated with a single exclusive physical resource, which may delay some accesses.

Session Semantics

 The Andrew File System, AFS uses the following semantics:

o Writes to an open file are not immediately visible to other users.
o When a file is closed, any changes made become available only to users who open the file at a later time.

 According to these semantics, a file can be associated with multiple (possibly different) views. Almost no

constraints are imposed on scheduling accesses. No user is delayed in reading or writing their personal copy

of the file.

 AFS file systems may be accessible by systems around the world. Access control is maintained through

(somewhat) complicated access control lists, which may grant access to the entire world (literally) or to

specifically named users accessing the files from specifically named remote environments.

Immutable-Shared-Files Semantics

 Under this system, when a file is declared as shared by its creator, it becomes immutable and the name

cannot be re-used for any other resource. Hence it becomes read-only, and shared access is simple.

Protection

 Files must be kept safe for reliability (against accidental damage), and protection (against deliberate

malicious access.) The former is usually managed with backup copies. This section discusses the latter.

 One simple protection scheme is to remove all access to a file. However this makes the file unusable, so

some sort of controlled access must be arranged.

Types of Access

 The following low-level operations are often controlled:

o Read - View the contents of the file

o Write - Change the contents of the file.

o Execute - Load the file onto the CPU and follow the instructions contained therein.

o Append - Add to the end of an existing file.

o Delete - Remove a file from the system.
o List -View the name and other attributes of files on the system.

 Higher-level operations, such as copy, can generally be performed through combinations of the

above.

Access Control

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 132

 One approach is to have complicated Access Control Lists, ACL, which specify exactly what access is
allowed or denied for specific users or groups.

o The AFS uses this system for distributed access.
o Control is very finely adjustable, but may be complicated, particularly when the specific users

involved are unknown. (AFS allows some wild cards, so for example all users on a certain
remote system may be trusted, or a given username may be trusted when accessing from any
remote system.)

 UNIX uses a set of 9 access control bits, in three groups of three. These correspond to R, W, and X

permissions for each of the Owner, Group, and Others. (See "man chmod" for full details.) The RWX

bits control the following privileges for ordinary files and directories:

bit

Files Directories

R

Read (view)

file contents.

Read directory contents. Required to get a listing of the directory.

 Write (change)

file contents.

Change directory contents. Required to create or delete files.

X

Execute file

contents as a

program.

 Access detailed directory information. Required to get a long listing, or to access any

specific file in the directory. Note that if a user has X but not R permissions on a

directory, they can still access specific files, but only if they already know the name of

the file they are trying to access.

 In addition there are some special bits that can also be applied:
o The set user ID (SUID) bit and/or the set group ID (SGID) bits applied to executable files

temporarily change the identity of whoever runs the program to match that of the owner / group
of the executable program. This allows users running specific programs to have access to files

(while running that program) to which they would normally be unable to access. Setting of
these two bits is usually restricted to root, and must be done with caution, as it introduces a
potential security leak.

o The sticky bit on a directory modifies write permission, allowing users to only delete files for
which they are the owner. This allows everyone to create files in /tmp, for example, but to only
delete files which they have created, and not anyone else's.

o The SUID, SGID, and sticky bits are indicated with an S, S, and T in the positions for execute
permission for the user, group, and others, respectively. If the letter is lower case, (s, s, t), then
the corresponding execute permission is not also given. If it is upper case, (S, S, T), then

the corresponding execute permission IS given.

o The numeric form of chmod is needed to set these advanced bits.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 133

Sample permissions in a UNIX system.

 Windows adjusts files access through a simple GUI:

Windows 7 access-control list management.

Other Protection Approaches and Issues

 Some systems can apply passwords, either to individual files, or to specific sub-directories, or to the

entire system. There is a trade-off between the number of passwords that must be maintained (and

remembered by the users) and the amount of information that is vulnerable to a lost or forgotten password.

 Older systems which did not originally have multi-user file access permissions (DOS and older

versions of Mac) must now be retrofitted if they are to share files on a network.

 Access to a file requires access to all the files along its path as well. In a cyclic directory structure,

users may have different access to the same file accessed through different paths.

 Sometimes just the knowledge of the existence of a file of a certain name is a security (or privacy)

concern. Hence the distinction between the R and X bits on UNIX directories.

FILE-SYSTEM STRUCTURE

 Hard disks have two important properties that make them suitable for secondary storage of files in file

systems: (1) Blocks of data can be rewritten in place, and (2) they are direct access, allowing any block of

data to be accessed with only (relatively) minor movements of the disk heads and rotational latency.

 Disks are usually accessed in physical blocks, rather than a byte at a time. Block sizes may range from

512 bytes to 4K or larger.

 File systems organize storage on disk drives, and can be viewed as a layered design:
o At the lowest layer are the physical devices, consisting of the magnetic media, motors & controls, and
the electronics connected to them and controlling them. Modern disk put more and more of the electronic

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 134

controls directly on the disk drive itself, leaving relatively little work for the disk controller card to perform.

o I/O Control consists of device drivers, special software programs (often written in assembly) which
communicate with the devices by reading and writing special codes directly to and from memory addresses
corresponding to the controller card's registers. Each controller card (device) on a system has a different
set of addresses (registers, a.k.a. ports) that it listens to, and a unique set of command codes and results
codes that it understands.

o The basic file system level works directly with the device drivers in terms of retrieving and storing raw
blocks of data, without any consideration for what is in each block. Depending on the system, blocks may
be referred to with a single block number, (e.g. block # 234234), or with head-sector-cylinder
combinations.

o The file organization module knows about files and their logical blocks, and how they map to physical
blocks on the disk. In addition to translating from logical to physical blocks, the file organization module
also maintains the list of free blocks, and allocates free blocks to files as needed.

o The logical file system deals with all of the meta data associated with a file (UID, GID, mode, dates,
etc), i.e. everything about the file except the data itself. This level manages the directory structure and the
mapping of file names to file control blocks, FCBs, which contain all of the meta data as well as block

number information for finding the data on the disk.

 The layered approach to file systems means that much of the code can be used uniformly for a wide

variety of different file systems, and only certain layers need to be filesystem specific. Common file

systems in use include the UNIX file system, UFS, the Berkeley Fast File System, FFS, Windows systems

FAT, FAT32, NTFS, CD-ROM systems ISO 9660, and for Linux the extended file systems ext2 and ext3

(among 40 others supported.)

Figure 4.13- Layered file system.

FILE-SYSTEM IMPLEMENTATION

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 135

Overview

 File systems store several important data structures on the disk:
o A boot-control block, (per volume) a.k.a. the boot block in UNIX or the partition boot sector in
Windows contains information about how to boot the system off of this disk. This will generally be the

first sector of the volume if there is a bootable system loaded on that volume, or the block will be left vacant
otherwise.

o A volume control block, (per volume) a.k.a. the master file table in UNIX or the superblock in
Windows, which contains information such as the partition table, number of blocks on each filesystem, and
pointers to free blocks and free FCB blocks.

o A directory structure (per file system), containing file names and pointers to corresponding FCBs.
UNIX uses inode numbers, and NTFS uses a master file table.

o The File Control Block, FCB, (per file) containing details about ownership, size, permissions, dates,
etc. UNIX stores this information in inodes, and NTFS in the master file table as a relational database
structure.

A typical file-control block.

 There are also several key data structures stored in memory:

o An in-memory mount table.
o An in-memory directory cache of recently accessed directory information.
o A system-wide open file table, containing a copy of the FCB for every currently open file in the system,
as well as some other related information.
o A per-process open file table, containing a pointer to the system open file table as well as some other
information. (For example the current file position pointer may be either here or in the system file table,
depending on the implementation and whether the file is being shared or not.)

 Figure below illustrates some of the interactions of file system components when files are created

and/or used:

o When a new file is created, a new FCB is allocated and filled out with important information regarding
the new file. The appropriate directory is modified with the new file name and FCB information.

o When a file is accessed during a program, the open() system call reads in the FCB information from
disk, and stores it in the system-wide open file table. An entry is added to the per-process open file table

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 136

referencing the system-wide table, and an index into the per-process table is returned by the open() system
call. UNIX refers to this index as a file descriptor, and Windows refers to it as a file handle.

o If another process already has a file open when a new request comes in for the same file, and it is
sharable, then a counter in the system-wide table is incremented and the per-process table is adjusted to
point to the existing entry in the system-wide table.

o When a file is closed, the per-process table entry is freed, and the counter in the system-wide table is
decremented. If that counter reaches zero, then the system wide table is also freed. Any data currently
stored in memory cache for this file is written out to disk if necessary.

- In-memory file-system structures. (a) File open. (b) File read.

Partitions and Mounting

 Physical disks are commonly divided into smaller units called partitions. They can also be combined
into larger units, but that is most commonly done for RAID installations and is left for later chapters.
 Partitions can either be used as raw devices (with no structure imposed upon them), or they can be

formatted to hold a filesystem (i.e. populated with FCBs and initial directory structures as appropriate.)

Raw partitions are generally used for swap space, and may also be used for certain programs such as

databases that choose to manage their own disk storage system. Partitions containing filesystems can

generally only be accessed using the file system structure by ordinary users, but can often be accessed as a

raw device also by root.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 137

 The boot block is accessed as part of a raw partition, by the boot program prior to any operating system

being loaded. Modern boot programs understand multiple OSes and filesystem formats, and can give the

user a choice of which of several available systems to boot.

 The root partition contains the OS kernel and at least the key portions of the OS needed to complete

the boot process. At boot time the root partition is mounted, and control is transferred from the boot

program to the kernel found there. (Older systems required that the root partition lie completely within the

first 1024 cylinders of the disk, because that was as far as the boot program could reach. Once the kernel

had control, then it could access partitions beyond the 1024 cylinder boundary.)

 Continuing with the boot process, additional filesystems get mounted, adding their information into the

appropriate mount table structure. As a part of the mounting process the file systems may be checked for

errors or inconsistencies, either because they are flagged as not having been closed properly the last time

they were used, or just for general principals. Filesystems may be mounted either automatically or

manually. In UNIX a mount point is indicated by setting a flag in the in-memory copy of the inode, so all

future references to that inode get re-directed to the root directory of the mounted filesystem.

Virtual File Systems

 Virtual File Systems, VFS, provide a common interface to multiple different filesystem types. In

addition, it provides for a unique identifier (vnode) for files across the entire space, including across all

filesystems of different types. (UNIX inodes are unique only across a single filesystem, and certainly do

not carry across networked file systems.)

 The VFS in Linux is based upon four key object types:

o The inode object, representing an individual file

o The file object, representing an open file.

o The superblock object, representing a filesystem.

o The dentry object, representing a directory entry.
 Linux VFS provides a set of common functionalities for each filesystem, using function pointers

accessed through a table. The same functionality is accessed through the same table position for all

filesystem types, though the actual functions pointed to by the pointers may be filesystem-specific. See

/usr/include/linux/fs.h for full details. Common operations provided include open(), read(), write(), and

mmap().

Schematic view of a virtual file system.

http://lxr.linux.no/%23linux%2Bv3.11.2/include/linux/fs.h#L523
http://lxr.linux.no/%23linux%2Bv3.11.2/include/linux/fs.h#L765
http://lxr.linux.no/%23linux%2Bv3.11.2/include/linux/fs.h#L1242
http://lxr.linux.no/%23linux%2Bv3.11.2/include/linux/dcache.h#L106

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 138

DIRECTORY IMPLEMENTATION

 Directories need to be fast to search, insert, and delete, with a minimum of wasted disk space.

Linear List

 A linear list is the simplest and easiest directory structure to set up, but it does have some drawbacks.

 Finding a file (or verifying one does not already exist upon creation) requires a linear search.

 Deletions can be done by moving all entries, flagging an entry as deleted, or by moving the last entry

into the newly vacant position.

 Sorting the list makes searches faster, at the expense of more complex insertions and deletions.

 A linked list makes insertions and deletions into a sorted list easier, with overhead for the links.

 More complex data structures, such as B-trees, could also be considered.

Hash Table

 A hash table can also be used to speed up searches.

 Hash tables are generally implemented in addition to a linear or other structure

ALLOCATION METHODS

 There are three major methods of storing files on disks: contiguous, linked, and indexed.

Contiguous Allocation

 Contiguous Allocation requires that all blocks of a file be kept together contiguously.

 Performance is very fast, because reading successive blocks of the same file generally requires no

movement of the disk heads, or at most one small step to the next adjacent cylinder.

 Storage allocation involves the same issues discussed earlier for the allocation of contiguous blocks of

memory (first fit, best fit, fragmentation problems, etc.) The distinction is that the high time penalty

required for moving the disk heads from spot to spot may now justify the benefits of keeping files

contiguously when possible.

 (Even file systems that do not by default store files contiguously can benefit from certain utilities that

compact the disk and make all files contiguous in the process.)

 Problems can arise when files grow, or if the exact size of a file is unknown at creation time:

o Over-estimation of the file's final size increases external fragmentation and wastes disk space.
o Under-estimation may require that a file be moved or a process aborted if the file grows beyond its
originally allocated space.

o If a file grows slowly over a long time period and the total final space must be allocated initially, then
a lot of space becomes unusable before the file fills the space.

 A variation is to allocate file space in large contiguous chunks, called extents. When a file outgrows its

original extent, then an additional one is allocated. (For example an extent may be the size of a complete

track or even cylinder, aligned on an appropriate track or cylinder boundary.) The high- performance files

system Veritas uses extents to optimize performance.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 139

Contiguous allocation of disk space.

Linked Allocation

 Disk files can be stored as linked lists, with the expense of the storage space consumed by each link. (

E.g. a block may be 508 bytes instead of 512.)
 Linked allocation involves no external fragmentation, does not require pre-known file sizes, and
allows files to grow dynamically at any time.

 Unfortunately linked allocation is only efficient for sequential access files, as random access requires

starting at the beginning of the list for each new location access.

 Allocating clusters of blocks reduces the space wasted by pointers, at the cost of internal

fragmentation.

 Another big problem with linked allocation is reliability if a pointer is lost or damaged. Doubly linked

lists provide some protection, at the cost of additional overhead and wasted space.

Linked allocation of disk space.

The File Allocation Table, FAT, used by DOS is a variation of linked allocation, where all the links are

stored in a separate table at the beginning of the disk. The benefit of this approach is that the FAT table

can be cached in memory, greatly improving random access speeds.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 140

File-allocation table.

Indexed Allocation

 Indexed Allocation combines all of the indexes for accessing each file into a common block (for that

file), as opposed to spreading them all over the disk or storing them in a FAT table.

Indexed allocation of disk space.

 Some disk space is wasted (relative to linked lists or FAT tables) because an entire index block must

be allocated for each file, regardless of how many data blocks the file contains. This leads to questions of
how big the index block should be, and how it should be implemented. There are several approaches:

o Linked Scheme - An index block is one disk block, which can be read and written in a single disk
operation. The first index block contains some header information, the first N block addresses, and if

necessary a pointer to additional linked index blocks.
o Multi-Level Index - The first index block contains a set of pointers to secondary index blocks, which
in turn contain pointers to the actual data blocks.
o Combined Scheme - This is the scheme used in UNIX inodes, in which the first 12 or so data block
pointers are stored directly in the inode, and then singly, doubly, and triply indirect pointers provide access
to more data blocks as needed. (See below.) The advantage of this scheme is that for small files (which
many are), the data blocks are readily accessible (up to 48K with 4K block sizes); files up to about 4144K

(using 4K blocks) are accessible with only a single indirect block (which can be cached),

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 141

and huge files are still accessible using a relatively small number of disk accesses (larger in theory than

can be addressed by a 32-bit address, which is why some systems have moved to 64-bit file pointers.)

The UNIX inode.

Performance

 The optimal allocation method is different for sequential access files than for random access files, and
is also different for small files than for large files.

 Some systems support more than one allocation method, which may require specifying how the file is

to be used (sequential or random access) at the time it is allocated. Such systems also provide conversion

utilities.

 Some systems have been known to use contiguous access for small files, and automatically switch to

an indexed scheme when file sizes surpass a certain threshold.

 And of course some systems adjust their allocation schemes (e.g. block sizes) to best match the

characteristics of the hardware for optimum performance.

FREE-SPACE MANAGEMENT

 Another important aspect of disk management is keeping track of and allocating free space.

Bit Vector

 One simple approach is to use a bit vector, in which each bit represents a disk block, set to 1 if free or

0 if allocated.

 Fast algorithms exist for quickly finding contiguous blocks of a given size

 The down side is that a 40GB disk requires over 5MB just to store the bitmap. (For example.)

Linked List

 A linked list can also be used to keep track of all free blocks.

 Traversing the list and/or finding a contiguous block of a given size are not easy, but fortunately are

not frequently needed operations. Generally the system just adds and removes single blocks from the

beginning of the list.

 The FAT table keeps track of the free list as just one more linked list on the table.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 142

Linked free-space list on disk.

Grouping

A variation on linked list free lists is to use links of blocks of indices of free blocks. If a block holds up to N

addresses, then the first block in the linked-list contains up to N-1 addresses of free blocks and a pointer to

the next block of free addresses.

Counting

 When there are multiple contiguous blocks of free space then the system can keep track of the starting

address of the group and the number of contiguous free blocks. As long as the average length of a contiguous

group of free blocks is greater than two this offers a savings in space needed for the free list. (Similar to

compression techniques used for graphics images when a group of pixels all the same color is encountered.)

Space Maps

 Sun's ZFS file system was designed for HUGE numbers and sizes of files, directories, and even file

systems.

 The resulting data structures could be VERY inefficient if not implemented carefully. For example,

freeing up a 1 GB file on a 1 TB file system could involve updating thousands of blocks of free list bit maps

if the file was spread across the disk.

 ZFS uses a combination of techniques, starting with dividing the disk up into (hundreds of)

metaslabs of a manageable size, each having their own space map.
 Free blocks are managed using the counting technique, but rather than write the information to a table,

it is recorded in a log-structured transaction record. Adjacent free blocks are also coalesced into a larger single

free block.

 An in-memory space map is constructed using a balanced tree data structure, constructed from the log

data.

 The combination of the in-memory tree and the on-disk log provide for very fast and efficient

management of these very large files and free blocks.

EFFICIENCY AND PERFORMANCE

Efficiency

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 143

 UNIX pre-allocates inodes, which occupies space even before any files are created.

 UNIX also distributes inodes across the disk, and tries to store data files near their inode, to reduce

the distance of disk seeks between the inodes and the data.

 Some systems use variable size clusters depending on the file size.
 The more data that is stored in a directory (e.g. last access time), the more often the directory blocks

have to be re-written.

 As technology advances, addressing schemes have had to grow as well.
o Sun's ZFS file system uses 128-bit pointers, which should theoretically never need to be expanded. (
The mass required to store 2^128 bytes with atomic storage would be at least 272 trillion kilograms!)
 Kernel table sizes used to be fixed, and could only be changed by rebuilding the kernels. Modern

tables are dynamically allocated, but that requires more complicated algorithms for accessing them.

Performance

 Disk controllers generally include on-board caching. When a seek is requested, the heads are moved

into place, and then an entire track is read, starting from whatever sector is currently under the heads (reducing

latency.) The requested sector is returned and the unrequested portion of the track is cached in the disk's

electronics.

 Some OSes cache disk blocks they expect to need again in a buffer cache.

 A page cache connected to the virtual memory system is actually more efficient as memory addresses

do not need to be converted to disk block addresses and back again.

 Some systems (Solaris, Linux, Windows 2000, NT, XP) use page caching for both process pages
and file data in a unified virtual memory.

 Figures below show the advantages of the unified buffer cache found in some versions of UNIX and

Linux - Data does not need to be stored twice, and problems of inconsistent buffer information are avoided.

Figure - I/O without a unified buffer cache.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 144

Figure I/O using a unified buffer cache.

 Page replacement strategies can be complicated with a unified cache, as one needs to decide whether

to replace process or file pages, and how many pages to guarantee to each category of pages. Solaris, for

example, has gone through many variations, resulting in priority paging giving process pages priority over

file I/O pages, and setting limits so that neither can knock the other completely out of memory.

 Another issue affecting performance is the question of whether to implement synchronous writes or

asynchronous writes. Synchronous writes occur in the order in which the disk subsystem receives them,

without caching; Asynchronous writes are cached, allowing the disk subsystem to schedule writes in a more

efficient order (See Chapter 12.) Metadata writes are often done synchronously. Some systems support flags

to the open call requiring that writes be synchronous, for example for the benefit of database systems that

require their writes be performed in a required order.

 The type of file access can also have an impact on optimal page replacement policies. For example,

LRU is not necessarily a good policy for sequential access files. For these types of files progression normally

goes in a forward direction only, and the most recently used page will not be needed again until after the file

has been rewound and re-read from the beginning, (if it is ever needed at all.) On the other hand, we can

expect to need the next page in the file fairly soon. For this reason sequential access files often take advantage

of two special policies:

o Free-behind frees up a page as soon as the next page in the file is requested, with the assumption that
we are now done with the old page and won't need it again for a long time.

o Read-ahead reads the requested page and several subsequent pages at the same time, with the
assumption that those pages will be needed in the near future. This is similar to the track caching that is already
performed by the disk controller, except it saves the future latency of transferring data from the disk controller

memory into motherboard main memory.

 The caching system and asynchronous writes speed up disk writes considerably, because the disk

subsystem can schedule physical writes to the disk to minimize head movement and disk seek times. (See

Chapter 12.) Reads, on the other hand, must be done more synchronously in spite of the caching system, with

the result that disk writes can counter-intuitively be much faster on average than disk reads.

MASS-STORAGE STRUCTURE

Overview of Mass-Storage Structure

Magnetic Disks

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 145

 Traditional magnetic disks have the following basic structure:
o One or more platters in the form of disks covered with magnetic media. Hard disk platters are made of
rigid metal, while "floppy" disks are made of more flexible plastic.
o Each platter has two working surfaces. Older hard disk drives would sometimes not use the very top
or bottom surface of a stack of platters, as these surfaces were more susceptible to potential damage.
o Each working surface is divided into a number of concentric rings called tracks. The collection of all
tracks that are the same distance from the edge of the platter, (i.e. all tracks immediately above one another
in the following diagram) is called a cylinder.

o Each track is further divided into sectors, traditionally containing 512 bytes of data each, although some
modern disks occasionally use larger sector sizes. (Sectors also include a header and a trailer, including

checksum information among other things. Larger sector sizes reduce the fraction of the disk consumed by
headers and trailers, but increase internal fragmentation and the amount of disk that must be marked bad in
the case of errors.)

o The data on a hard drive is read by read-write heads. The standard configuration (shown below) uses
one head per surface, each on a separate arm, and controlled by a common arm assembly which moves all

heads simultaneously from one cylinder to another. (Other configurations, including independent read- write
heads, may speed up disk access, but involve serious technical difficulties.)

o The storage capacity of a traditional disk drive is equal to the number of heads (i.e. the number of

working surfaces), times the number of tracks per surface, times the number of sectors per track, times the

number of bytes per sector. A particular physical block of data is specified by providing the head-sector-

cylinder number at which it is located.

-Moving-head disk mechanism.

 In operation the disk rotates at high speed, such as 7200 rpm (120 revolutions per second.) The rate
at which data can be transferred from the disk to the computer is composed of several steps:

o The positioning time, a.k.a. the seek time or random access time is the time required to move the heads
from one cylinder to another, and for the heads to settle down after the move. This is typically the slowest
step in the process and the predominant bottleneck to overall transfer rates.

o The rotational latency is the amount of time required for the desired sector to rotate around and come
under the read-write head.This can range anywhere from zero to one full revolution, and on the average will
equal one-half revolution. This is another physical step and is usually the second slowest step behind seek

time. (For a disk rotating at 7200 rpm, the average rotational latency would be 1/2 revolution / 120 revolutions
per second, or just over 4 milliseconds, a long time by computer standards.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 146

o The transfer rate, which is the time required to move the data electronically from the disk to the
computer. (Some authors may also use the term transfer rate to refer to the overall transfer rate, including
seek time and rotational latency as well as the electronic data transfer rate.)

 Disk heads "fly" over the surface on a very thin cushion of air. If they should accidentally contact the

disk, then a head crash occurs, which may or may not permanently damage the disk or even destroy it

completely. For this reason it is normal to park the disk heads when turning a computer off, which means to

move the heads off the disk or to an area of the disk where there is no data stored.

 Floppy disks are normally removable. Hard drives can also be removable, and some are even hot-

swappable, meaning they can be removed while the computer is running, and a new hard drive inserted in

their place.

 Disk drives are connected to the computer via a cable known as the I/O Bus. Some of the common

interface formats include Enhanced Integrated Drive Electronics, EIDE; Advanced Technology Attachment,

ATA; Serial ATA, SATA, Universal Serial Bus, USB; Fiber Channel, FC, and Small Computer Systems

Interface, SCSI.

 The host controller is at the computer end of the I/O bus, and the disk controller is built into the disk

itself. The CPU issues commands to the host controller via I/O ports. Data is transferred between the magnetic

surface and onboard cache by the disk controller, and then the data is transferred from that cache to the host

controller and the motherboard memory at electronic speeds.

Solid-State Disks - New

 As technologies improve and economics change, old technologies are often used in different ways. One

example of this is the increasing used of solid state disks, or SSDs.

 SSDs use memory technology as a small fast hard disk. Specific implementations may use either flash
memory or DRAM chips protected by a battery to sustain the information through power cycles.

 Because SSDs have no moving parts they are much faster than traditional hard drives, and certain

problems such as the scheduling of disk accesses simply do not apply.

 However SSDs also have their weaknesses: They are more expensive than hard drives, generally not as

large, and may have shorter life spans.

 SSDs are especially useful as a high-speed cache of hard-disk information that must be accessed

quickly. One example is to store filesystem meta-data, e.g. directory and inode information, that must be

accessed quickly and often. Another variation is a boot disk containing the OS and some application

executables, but no vital user data. SSDs are also used in laptops to make them smaller, faster, and lighter.

 Because SSDs are so much faster than traditional hard disks, the throughput of the bus can become a

limiting factor, causing some SSDs to be connected directly to the system PCI bus for example.

Magnetic Tapes - Magnetic tapes were once used for common secondary storage before the days of

hard disk drives, but today are used primarily for backups.

 Accessing a particular spot on a magnetic tape can be slow, but once reading or writing commences,

access speeds are comparable to disk drives.

 Capacities of tape drives can range from 20 to 200 GB, and compression can double that capacity.

Disk Structure

 The traditional head-sector-cylinder, HSC numbers are mapped to linear block addresses by numbering

the first sector on the first head on the outermost track as sector 0. Numbering proceeds with the rest of the

sectors on that same track, and then the rest of the tracks on the same cylinder before proceeding

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 147

through the rest of the cylinders to the center of the disk. In modern practice these linear block addresses are
used in place of the HSC numbers for a variety of reasons:

1. The linear length of tracks near the outer edge of the disk is much longer than for those tracks located

near the center, and therefore it is possible to squeeze many more sectors onto outer tracks than onto inner

ones.

2. All disks have some bad sectors, and therefore disks maintain a few spare sectors that can be used in

place of the bad ones. The mapping of spare sectors to bad sectors in managed internally to the disk controller.

3. Modern hard drives can have thousands of cylinders, and hundreds of sectors per track on their

outermost tracks. These numbers exceed the range of HSC numbers for many (older) operating systems, and

therefore disks can be configured for any convenient combination of HSC values that falls within the total

number of sectors physically on the drive.

 There is a limit to how closely packed individual bits can be placed on a physical media, but that limit

is growing increasingly more packed as technological advances are made.

 Modern disks pack many more sectors into outer cylinders than inner ones, using one of two

approaches:

o With Constant Linear Velocity, CLV, the density of bits is uniform from cylinder to cylinder. Because
there are more sectors in outer cylinders, the disk spins slower when reading those cylinders, causing the rate

of bits passing under the read-write head to remain constant. This is the approach used by modern CDs and
DVDs.
o With Constant Angular Velocity, CAV, the disk rotates at a constant angular speed, with the bit density

decreasing on outer cylinders. (These disks would have a constant number of sectors per track on all
cylinders.)

DISK ATTACHMENT

Disk drives can be attached either directly to a particular host (a local disk) or to a network.

Host-Attached Storage

 Local disks are accessed through I/O Ports as described earlier.

 The most common interfaces are IDE or ATA, each of which allow up to two drives per host

controller.

 SATA is similar with simpler cabling.

 High end workstations or other systems in need of larger number of disks typically use SCSI disks:
o The SCSI standard supports up to 16 targets on each SCSI bus, one of which is generally the host
adapter and the other 15 of which can be disk or tape drives.

o A SCSI target is usually a single drive, but the standard also supports up to 8 units within each target.
These would generally be used for accessing individual disks within a RAID array. (See below.)

o The SCSI standard also supports multiple host adapters in a single computer, i.e. multiple SCSI
busses.

o Modern advancements in SCSI include "fast" and "wide" versions, as well as SCSI-2.

o SCSI cables may be either 50 or 68 conductors. SCSI devices may be external as well as internal.
o See wikipedia for more information on the SCSI interface.
 FC is a high-speed serial architecture that can operate over optical fiber or four-conductor copper wires,

and has two variants:
o A large switched fabric having a 24-bit address space. This variant allows for multiple devices and
multiple hosts to interconnect, forming the basis for the storage-area networks, SANs, to be discussed in a
future section.

http://en.wikipedia.org/wiki/SCSI

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 148

o The arbitrated loop, FC-AL, that can address up to 126 devices (drives and controllers.)

Network-Attached Storage

 Network attached storage connects storage devices to computers using a remote procedure call, RPC,

interface, typically with something like NFS filesystem mounts. This is convenient for allowing several

computers in a group common access and naming conventions for shared storage.

 NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols and standard network

connections, allowing long-distance remote access to shared files.

 NAS allows computers to easily share data storage, but tends to be less efficient than standard host-

attached storage.

Figure 4.26- Network-attached storage.

Storage-Area Network

 A Storage-Area Network, SAN, connects computers and storage devices in a network, using storage
protocols instead of network protocols.

 One advantage of this is that storage access does not tie up regular networking bandwidth.

 SAN is very flexible and dynamic, allowing hosts and devices to attach and detach on the fly.

 SAN is also controllable, allowing restricted access to certain hosts and devices.

Figure - Storage-area network.

DISK SCHEDULING

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 149

 As mentioned earlier, disk transfer speeds are limited primarily by seek times and rotational latency.

When multiple requests are to be processed there is also some inherent delay in waiting for other requests to

be processed.

 Bandwidth is measured by the amount of data transferred divided by the total amount of time from the

first request being made to the last transfer being completed, (for a series of disk requests.)

 Both bandwidth and access time can be improved by processing requests in a good order.

 Disk requests include the disk address, memory address, number of sectors to transfer, and whether the

request is for reading or writing.

FCFS Scheduling

 First-Come First-Serve is simple and intrinsically fair, but not very efficient. Consider in the following

sequence the wild swing from cylinder 122 to 14 and then back to 124:

Figure -FCFS disk scheduling.

SSTF Scheduling

 Shortest Seek Time First scheduling is more efficient, but may lead to starvation if a constant stream

of requests arrives for the same general area of the disk.

 SSTF reduces the total head movement to 236 cylinders, down from 640 required for the same set of

requests under FCFS. Note, however that the distance could be reduced still further to 208 by starting

with 37 and then 14 first before processing the rest of the requests.

Figure - SSTF disk scheduling.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 150

SCAN Scheduling

 The SCAN algorithm, a.k.a. the elevator algorithm moves back and forth from one end of the disk to

the other, similarly to an elevator processing requests in a tall building.

Figure - SCAN disk scheduling.

 Under the SCAN algorithm, If a request arrives just ahead of the moving head then it will be processed

right away, but if it arrives just after the head has passed, then it will have to wait for the head to pass

going the other way on the return trip. This leads to a fairly wide variation in access times which can

be improved upon.

 Consider, for example, when the head reaches the high end of the disk: Requests with high cylinder

numbers just missed the passing head, which means they are all fairly recent requests, whereas requests

with low numbers may have been waiting for a much longer time. Making the return scan from high to

low then ends up accessing recent requests first and making older requests wait that much longer.

C-SCAN Scheduling

 The Circular-SCAN algorithm improves upon SCAN by treating all requests in a circular queue fashion

- Once the head reaches the end of the disk, it returns to the other end without processing any requests,

and then starts again from the beginning of the disk:

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 151

Figure - C-SCAN disk scheduling.

LOOK Scheduling

 LOOK scheduling improves upon SCAN by looking ahead at the queue of pending requests, and not

moving the heads any farther towards the end of the disk than is necessary. The following diagram

illustrates the circular form of LOOK:

Figure 4.32- C-LOOK disk scheduling.

Selection of a Disk-Scheduling Algorithm

 With very low loads all algorithms are equal, since there will normally only be one request to process

at a time.

 For slightly larger loads, SSTF offers better performance than FCFS, but may lead to starvation when

loads become heavy enough.
 For busier systems, SCAN and LOOK algorithms eliminate starvation problems.

 The actual optimal algorithm may be something even more complex than those discussed here, but the

incremental improvements are generally not worth the additional overhead.

 Some improvement to overall filesystem access times can be made by intelligent placement of directory

and/or inode information. If those structures are placed in the middle of the disk instead of at the

beginning of the disk, then the maximum distance from those structures to data blocks is reduced to

only one-half of the disk size. If those structures can be further distributed and furthermore have their

data blocks stored as close as possible to the corresponding directory structures, then that reduces still

further the overall time to find the disk block numbers and then access the corresponding data blocks.

OPERATING SYSTEMS AY:2023-24

DEPT OF CSE Page 152

 On modern disks the rotational latency can be almost as significant as the seek time, however it is not

within the OSes control to account for that, because modern disks do not reveal their internal sector

mapping schemes, (particularly when bad blocks have been remapped to spare sectors.)

o Some disk manufacturers provide for disk scheduling algorithms directly on their disk
controllers, (which do know the actual geometry of the disk as well as any remapping), so that
if a series of requests are sent from the computer to the controller then those requests can be

processed in an optimal order.

o Unfortunately there are some considerations that the OS must take into account that are beyond

the abilities of the on-board disk-scheduling algorithms, such as priorities of some requests over

others, or the need to process certain requests in a particular order. For this reason OSes may

elect to spoon-feed requests to the disk controller one at a time in certain situations.

153

	ON
	R22A0509
	Prepared by DUTTA SAI ESWARI
	(Autonomous Institution–UGC,Govt.of India)
	Course Objectives:
	UNIT – I
	UNIT – II
	UNIT – III
	UNIT – IV
	UNIT - V
	TEXT BOOKS:
	REFERENCE BOOKS:
	Course Outcomes:
	INDEX
	UNIT-I
	Disadvantages
	Following are the common services provided by an operating system:
	Introduction to Linux:
	Basic Features
	Linux Advantages
	Layered Architecture:
	LINUX File system

	Networking Commands
	UNIT – II (1)
	Shell Programming
	What is a Shell?
	Introduction- Working with Bourne Shell
	Shell responsibilities
	Redirecting Output
	Pipes
	Here Documents
	How It Works
	Running a Shell Script
	Interactive Programs
	The hell as a Programming LanguageCreating a Script
	Making a Script Executable
	Shell Syntax
	Shell metacharacters

	Filename substitution:
	Shell Variables
	1) User-defined variables:
	2) Environment Variables
	Command substitution and Shell commands:
	The Environment-Environment Variables
	Parameter Variables
	Quoting
	How It Works
	The test, or []Command
	Control Structures
	if
	How It Works (1)
	A Problem with Variables
	for
	How It Works (2)
	How It Works (3)
	while

	echo "Here we go again" foo=$(($foo+1))
	until
	case
	How It Works
	How It Works (1)
	Parameter Expansion
	How It Works (2)
	Shell Script ExamplesExample
	elif - Doing further Checks

	Process
	Differences between Process and Program
	Diagram of process state
	Process Control Block:
	Process Control Block
	Threads:
	Thread States:
	Egg: Word processor.
	Differences between Process and Thread
	PROCESS SCHEDULING:
	Types of schedulers
	2. Short term scheduler:
	TAT = Waiting time in ready queue + executing time + waiting time in waiting queue forI/O.
	CPU SCHEDULINGALGORITHMS:
	Average turn around time:
	Average waiting time:
	Advantages: Easy to Implement, Simple.
	Advantages : Least average waiting time Least average turn around time Least average response time
	Disadvantages:
	Disadvantage: Starvation
	Multiple – processor scheduling:
	1) Approaches to multiple-processor schedulinga)Asymmetric multiprocessing
	b)Symmetric multiprocessing:
	2) Processor Affinity
	a) Soft affinity:
	b) Hard affinity:
	3) Load balancing:
	Push migration:
	UNIT-III
	DEADLOCKS
	DEADLOCK CHARACTERIZATION:
	NECESSARY CONDITIONS:
	RESOURCE ALLOCATION GRAPH
	DEADLOCK PREVENTION
	No Preemption –
	Safe State
	Resource-Allocation Graph Scheme
	Unsafe State In Resource-Allocation Graph
	Safety Algorithm
	Resource-Request Algorithm for Process Pi
	Example of Banker’s Algorithm(REFER CLASS NOTES)
	P1 Request (1,0,2)
	Deadlock Detection
	Single Instance of Each Resource Type
	Resource-Allocation Graph and Wait-for Graph
	Several Instances of a Resource Type
	Detection Algorithm
	Recovery from Deadlock:
	Resource Preemption
	Process Management And Synchronization:
	Requirements:-
	General structure of a process:
	Syntax for interrupt disabling process
	Special Hardware Instructions
	Test-and-set Instruction
	Implementation
	Exchange Instruction
	Properties of the Machine-instruction Approach
	Disadvantages (1)
	Semaphores
	Principle
	Operations
	Usage
	Implementation (1)
	Binary Semaphore
	Wait operation
	Signal operation
	Classical Problems Of Synchronization
	1) Producer-Consumer Problem
	Producer Process
	Consumer Process
	2) Dining-Philosophers Problem:-
	3) Readers and Writers Problem:-
	3) Sleeping Barber Problem:-
	Critical Regions
	Difficulties
	Monitors
	Problems
	Message Passing
	UNIT -IV
	Inter Process Communication
	Syncing different types of accesses
	Reader/Writer locks
	More synchronization constructs

	Need for hardware support
	Atomic instructions
	Hardware specific

	Types of System Calls
	Process Control
	File Management
	Device Management
	Information Maintenance
	Communication

	open()
	read()
	write()
	close()
	Main Memory
	4.1.1 Basic Hardware
	Figure 4.1 - A base and a limit register define a logical addresss space
	3.1.2 Address Binding
	Figure 4.3 - Multistep processing of a user program
	Figure 3.4 - Dynamic relocation using a relocation register
	4.1.5 Dynamic Linking and Shared Libraries
	4.2 Swapping

	4.2.1 Standard Swapping
	Figure 4.5 - Swapping of two processes using a disk as a backing store
	4.3.1 Memory Protection
	Figure 3.6 - Hardware support for relocation and limit registers
	4.3.3. Fragmentation
	4.4.1 Basic Method
	Figure 4.7 Programmer's view of a program.
	Figure 4.8 - Segmentation hardware
	4.5.1 Basic Method
	Figure 4.10 - Paging hardware
	Figure 4.12 - Paging example for a 32-byte memory with 4-byte pages
	Figure 4.13 - Free frames (a) before allocation and (b) after allocation
	Figure 4.14 - Paging hardware with TLB
	Figure 4.15 - Valid (v) or invalid (i) bit in page table
	Figure 4.16 - Sharing of code in a paging environment
	4.6.1 Hierarchical Paging
	Figure 4.17 A two-level page-table scheme
	4.6.2 Hashed Page Tables
	Figure 3.19 - Hashed page table
	Figure 4.20 - Inverted page table
	Figure 4.21 - Logical to physical address translation in IA-32
	Figure 4.22 - IA-32 segmentation
	Figure 4.23 - Paging in the IA-32 architecture.
	VIRTUAL MEMORY
	Figure 4.25 - Diagram showing virtual memory that is larger than physical memory
	Figure 4.26 - Virtual address space
	Figure 4.27 - Shared library using virtual memory
	Figure 4.28 - Transfer of a paged memory to contiguous disk space
	Figure 4.29 - Page table when some pages are not in main memory.
	Figure 4.30 - Steps in handling a page fault
	4.2.2 Performance of Demand Paging
	4.3 Page Replacement

	Figure 4.31 - Need for page replacement.
	Figure 4.32 - Page replacement.
	Figure 4.33 - Graph of page faults versus number of frames.
	Figure 4 .34 - FIFO page-replacement algorithm.
	Figure 4.35 - Page-fault curve for FIFO replacement on a reference string.
	Figure 4.36 - Optimal page-replacement algorithm
	Figure 4.37 - LRU page-replacement algorithm.
	Figure 4.38 - Use of a stack to record the most recent page references.
	4.5.1 Additional-Reference-Bits Algorithm
	4.5.2 Second-Chance Algorithm
	Figure 4.39 - Second-chance (clock) page-replacement algorithm.
	4.6 Counting-Based Page Replacement
	4.7 Page-Buffering Algorithms
	4.8 Applications and Page Replacement
	4.4.1 Minimum Number of Frames
	4.4.2 Allocation Algorithms
	4.4.3 Global versus Local Allocation
	4.4.4 Non-Uniform Memory Access
	4.5.1 Cause of Thrashing
	Figure 4.40 - Thrashing
	4.5.2 Working-Set Model
	Figure 4.41 - Working-set model.
	4.5.3 Page-Fault Frequency
	Figure 4.42 - Page-fault frequency.
	UNIT- V
	FILE-SYSTEM INTERFACE
	o Size
	o Time & Date
	File Operations
	o Disk location of the file.
	File Types
	Common file types.
	File Structure
	Internal File Structure
	Access Methods Sequential Access
	Sequential-access file. Direct Access
	Simulation of sequential access on a direct-access file. Other Access Methods
	Example of index and relative files. Directory Structure
	A typical file-system organization. Directory Overview
	Single-Level Directory
	Single-level directory. Two-Level Directory
	Two-level directory structure. Tree-Structured Directories
	Tree-structured directory structure.
	Acyclic-graph directory structure. General Graph Directory
	General graph directory. File-System Mounting
	File system. (a) Existing system. (b) Unmounted volume.
	File Sharing Multiple Users
	Remote File Systems
	The Client-Server Model
	Distributed Information Systems
	Failure Modes
	Consistency Semantics
	UNIX Semantics
	Session Semantics
	Immutable-Shared-Files Semantics
	Protection
	Types of Access
	Access Control
	Sample permissions in a UNIX system.
	Windows 7 access-control list management. Other Protection Approaches and Issues
	FILE-SYSTEM STRUCTURE
	Figure 4.13- Layered file system.
	Overview
	A typical file-control block.
	- In-memory file-system structures. (a) File open. (b) File read. Partitions and Mounting
	Virtual File Systems
	Schematic view of a virtual file system.
	Linear List
	Hash Table
	ALLOCATION METHODS
	Contiguous Allocation
	Contiguous allocation of disk space. Linked Allocation
	Linked allocation of disk space.
	File-allocation table. Indexed Allocation
	Indexed allocation of disk space.
	The UNIX inode.
	FREE-SPACE MANAGEMENT
	Bit Vector
	Linked List
	Linked free-space list on disk.
	Counting
	Space Maps
	EFFICIENCY AND PERFORMANCE
	Performance
	Figure - I/O without a unified buffer cache.
	MASS-STORAGE STRUCTURE
	-Moving-head disk mechanism.
	Solid-State Disks - New
	Disk Structure
	DISK ATTACHMENT
	Host-Attached Storage
	Network-Attached Storage
	Figure 4.26- Network-attached storage.
	Figure - Storage-area network. DISK SCHEDULING
	FCFS Scheduling
	Figure -FCFS disk scheduling.
	Figure - SSTF disk scheduling.
	Figure - SCAN disk scheduling.
	C-SCAN Scheduling
	Figure - C-SCAN disk scheduling. LOOK Scheduling
	Figure 4.32- C-LOOK disk scheduling. Selection of a Disk-Scheduling Algorithm

